

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

ON BI-LEVEL LINEAR FRACTIONAL PROGRAMMING PROBLEMS

By

Refaat Mohammad Aly Rabie

B. Sc. in Mathematics. Tanta University (1985). Diploma in Operations Research, Institute of Statistical Studies and Research, Cairo University (2002).

Supervised by

Prof. Dr. Shaban A. Shaban

Professor of Mathematical Statistics, Institute of Statistical Studies and Research, Cairo University, Egypt.

Prof. Dr. Mohamed S. Osman

Professor of Mathematics and Operations Research, Vice-dean of the Higher Technological Institute, Tenth of Ramadan City, Egypt.

Dr. Aly M. Ragab

Assistant Prof., Department of Operations Research.
Institute of Statistical Studies and Research.
Cairo University, Egypt.

This thesis is submitted to the Department of Operations Research, Institute of Statistical Studies and Research, Cairo University, in partial fulfillment of the requirements for the degree of M. Sc. in Operations Research.

B2.12

2006

I certify that this work has not been accepted in substance for any academic degree and is not being concurrently submitted in candidature for any other degree.

Any portions of this thesis for which I am indebted to other sources are mentioned and explicit references are given.

Student: Refaat Mohammad Aly Rabie.

Approval Sheet

On Bi-Level Linear Fractional Programming Problems

By

Refaat Mohammad Aly Rabie

A Thesis submitted as Partial Fulfillment for the Degree for Master of Science in Operations Research.

This Thesis has been approved by:

Name
1- Prof. Dr. Hegazy M. Zaher
2- Prof. Dr. Mohamed S. A. Osman
3- Prof. Dr. Ebrahim A. Youness
4- Prof. Dr. Shaban A. Shaban

Signature

H. O.

Shaban A. Shaban

To my parents, my wife who gave me her full time and the support during my study and to my brother Sobhy.

ACKNOWLEDGEMENT

, J,

I am deeply thankful to ALLAH by grace of whom, the progress and success of this thesis was possible.

I am grateful to **Prof. Dr. Mohamed Sayed Ali Osman**, professor of Mathematics and Operations Research, Vice-dean of the Higher Technological Institute, Tenth of Ramadan City, for his boundless encouragement and instructive assistance throughout this thesis.

I would like to thank **Prof. Dr. Shaban Abdul-Hamed Shaban**, Professor of Mathematical Statistics; Institute of Statistical Studies and Research, Cairo University, for his great advice and help.

I would like to express my deep thanks for **Dr. Aly Mohamed Ragab**, Assistant Prof., Department of Operations Research, Institute of
Statistical Studies and Research, Cairo University, for his co-operation,
continuous interest and patience.

Also, I would like to thank **Prof. Dr. Mahmoud Attia Abo-Sinna**, professor of Mathematics and Operations Research, Faculty of Engineering, Menofia University, for his help to choose the research point and his great support.

Finally, would like to thank **Dr. Osama Ezz-Eldin Emam**, Lecturer of mathematics, the Higher Technological Institute, Tenth of Ramadan City, for his great advice and help.

ABSTRACT

The decentralized planning has been recognized as an important decision-making problem. Multi-level programming models partition control over decision variables among the ordered levels within a hierarchical planning structure. The decentralized planning seeks to find a simultaneous compromise among the various objective functions of the different divisions.

The Bi-level linear programming problem is a special case of the multi-level linear programming problems and is a nested optimization model involving two problems, an upper and lower one. Both problems have to be optimized given a single feasible region. Each decision-maker at both levels attempts to optimize his individual objective function, and their final decisions are executed sequentially where the upper-level decision-maker makes his decision firstly.

Most applications of the bi-level linear programming problems are in the economics realm, particularly central economic planning. The problem can be viewed as a two-person sequential game of perfect information, i.e., a two-person static Stackelberg game, where two players wish to minimize their own cost functions. The first player, the leader, knows the cost function of the second player, the follower, who may or may not know the cost function of the leader, knows the selected strategy by the leader and takes this into account when computing his own strategy. The leader is assumed to be able to anticipate the reactions of the follower.

When there is only one level of decision, the optimization problems involving one or more ratios in the objective function are called fractional programming. Ratio functions arise in economic applications when an efficient measure of a system is optimized or in approaching a stochastic programming problem.

In the bi-level linear programming, the linear fractional objectives are sometimes encountered (i.e., ratio objectives that have linear numerators and denominators). Examples of fractional objectives including return on investment, liquidity, productivity, assets per share, etc; can be found in finance or corporate planning.

Chapter one attempts to present a survey on the bi-level linear programming problems, its definition, formulation, properties, geometric characterization and solution approaches. For solving the bi-level linear programming problem, the *Kuhn-Tucker* approach, the Parametric Complementary Pivot Algorithm and the "Kth-Best Algorithm" are presented. The linear fractional programming is presented in this chapter to show its formulation, assumptions and solving methods. Some examples of objective functions or criteria which can be represented as bi-level linear fractional programming problems are showed also.

Chapter two will propose a new algorithm for the stability set of the first kind for the bi-level linear fractional programming problems under using an interactive fuzzy programming approach for the bi-level linear fractional programming problems with the essentially co-operative decision-makers. In this interactive fuzzy programming approach, after determining the fuzzy goals of the decision-makers at both levels, a satisfactory solution is efficiently derived by updating the satisfactory level of the upper-level decision-maker with considerations of overall satisfactory balance between both levels. In the interactive process, the solution is obtained by combined use of the bisection method and a linear programming technique and using the variable transformation method for dealing with the fractional objective functions.

Chapter three presents the concepts of the fuzzy programming with the fuzzy set theory. By using the tolerance concept of the membership function, a new fuzzy approach for solving the bi-level linear fractional programming problems is proposed, where the upper-level decision-maker defines his objective function and decision variables with possible tolerances which are described as membership functions by the fuzzy set theory. We will propose a new algorithm for the stability set of the first kind for the bi-level linear fractional programming problems under using the proposed fuzzy approach. Finally, chapter four presents conclusions and some points for future researches.

CONTENTS

CHAPTER 1 A SURVEY ON BI-LEVEL LINEAR PROGRAMMING PROBLEMS)	1
1.1 Introduction		2
1.2 Heuristic Review		3
1.3 The Bi-Level Linear Programming Problem		6
1.3.1 The Problem Formulation and Solution Concept		8
1.3.2 Definitions and Properties of BLLP Problem		10
1.3.3 The Bi-Level Linear Programming Problem Applications		11
1.3.4 The Solutions Approaches		12
1.3.4.1 The Vertex Enumeration Approach		12
1.3.4.2 The kuhn-Tucker Approach		17
1.3.5 The Solution Approaches Classification		21
1.4 The Linear Fractional Programming Problem		22
1.4.1 Fractional Objectives		23
1.4.2 Theoretical Properties		23
1.5 The Bi-Level Linear Fractional Programming Problem		26
1.5.1 The Problem Formulation		27
1.5.2 Definitions and Theorems		28
CHAPTER 2 AN INTERACTIVE FUZZY APPROACH FOR THE BI-LE	VE	L
LINEAR FRACTIONAL PROGRAMMING PROBLEMS		36
2.1 Introduction		37
2.2 The Problem Formulation and Solution Concept		38
2.3 The Fundamentals of the Fuzzy Set Theory		39
2 4 A. Lutana dina Enggy Programming Approach		44
2.4 An Interactive Fuzzy Programming Approach2.4.1 The Interactive Process for the Bi-Level Linear Fractional		77
Programming Problem		45
2.4.2 The Termination Conditions of the Interactive Process		55
2.4.2 The Termination Conditions of the Interactive Process 2.4.3 The Procedure of Updating the Satisfactory Level		55
2.4.3 The Procedure of Opdatting the Satisfactory Bever		55
/ M. M. 110° M. 1371 II 11131 I. F. 158 (G. 1171 E)		

2.5 A Parametric Study for the Bi-Level Linear Fractional Programming Problem under an Interactive Approach 2.5.1 Definitions and Solution Concept 2.5.2 Determination of the Stability Set of the First Kind	62 62 64
CHAPTER 3 A FUZZY APPROACH FOR THE BI-LEVEL LINEAR FRACTIONAL PROGRAMMING PROBLEMS	69
3.1 Introduction	70
3.2 The Fuzzy Linear Programming	71
3.3 A Fuzzy Approach for the Bi-Level Linear Fractional Programming Problems	 74
 3.4 A Parametric Study for the Bi-Level Linear Fractional Programming Problem under a Fuzzy Approach 3.4.1 Definitions and Solution Concept 3.4.2 Determination of the Stability Set of the First Kind 	86 86 89
CHAPTER 4 CONCLUSIONS AND POINTS FOR FUTURE RESEARCHES	93
4.1 Conclusions	94
4.2 Points or Future Researches	95
BIBLIOGRAPHY	97

LIST OF FIGURES

·	
Figure) Page
Figure 1.1 A decentralized hierarchical structure	3
Figure 1.2 A bi-level linear programming example	17
Figure 1.3 The bi-level and multi-level programming classification	21
Figure 1.4 Graph of example 1.2	26
Figure 2.1 Zadeh diagram for a fuzzy set A and some α-level sets	41
Figure 2.2 Zadeh diagram for the convex fuzzy set	42
Figure 2.3 The strictly monotone decreasing membership function	47
Figure 2.4 Flow chart for the bisection method	50
Figure 3.1 Linear membership function	73
Figure 3.2 Flow chart for the proposed fuzzy approach	76
Figure 3.3 The membership function of the decision variable	77
Figure 3.4 The membership function of the objective function f_i	78
Figure 3.5 The membership function of f_i	82
Figure 3.6 The membership function of f_2	83
Figure 3.7 The membership function of x_1	84
Figure 3.8 The membership function of x_2	84