BALANCE DISTURBANCE IN PATIENTS WITH MULTIPLE SCLEROSIS

Thesis

Submitted in Partial Fulfillment of Requirements for Medical Doctorate Degree In **Neurology**

By

Mohammed Ibrahim Abd El Samie Oraby

M.B., B.Ch. (Cairo University) M.Sc. (Neuropsychiatry)

Supervised by

Prof. Dr. Ahmed Talaat Al Ghoniemy

Professor and Head of Neurology Department Cairo University

Prof. Dr. Randa Shawky Deif

Professor of Neurology Cairo University

Dr. Rasha Hassan Soliman

Assist. Professor of Neurology Bani Suif University

> Faculty of Medicine Cairo University 2008

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

Ş

ACKNOWLEDGMENT

First of all, I would like to thank **ALLAH**, the Merciful and Compassionate for making this work possible and for granting me with the best teachers, family, friends and colleagues that many people would dream to have.

I would like to express my deep thanks and appreciation to Prof. Dr. **Ahmed Talaat** professor and head of Neurology department, Cairo University for his kind supervision, support, and valuable observations. I am deeply indebted to him.

Words fail to express my feelings and gratitude towards Prof. Dr. **Randa Deif** professor of Neurology, Cairo University; what she done for me can not be translated into words; her endless effort, her Kind and valuable advices will always be engraved with my memory.

I am greatly thankful to Dr. **Rasha Hassan** Assistant professor of Neurology, Bani Suif University, who was the heart of this thesis, for her ideas, support and guidance throughout the work.

I would like also to express my thanks to **Dr. Mohammed El Sayed** Assistant professor of Neurology, Cairo University, for his kind help and advices during the preparation of this work.

I wish also to thank all my professors and colleagues in the Neurology department, Cairo University for their support and encouragement through the work.

Finally, but certainly not last, I am indebted to my family for all they have done for me.

Mohammed Ibrahim Oraby 2008

TABLE OF CONTENTS

Introduction and Aim of work1
Review of Literature
Definition, Epidemiology, Risk factors and Clinical picture of
Multiple sclerosis(4)
Diagnosis and differential diagnosis of Multiple sclerosis(25)
Physiology of balance and balance disorders(37)
Physiology of gait and gait disorders(70)
Balance and gait in patients with Multiple sclerosis(79)
Posturography(108)
Patients and Methods
Results145
Discussion
Summary and Conclusion
References
Appendices
Arabic Summary

List of Abbreviations

ADT: Adaptation test.

AFO: Ankle-foot orthosis.

BAEP: Brain stem auditory evoked potentials.

SSEP: Somatosensory evoked potentials.

CPG: Central pattern generator.

BBS: Berg balance scale.

BOS: Base of support.

CDMS: Clinically definite Multiple sclerosis.

CDP: Computerized dynamic posturography.

CIS: Clinically isolated monophasic syndromes.

CNS: Central nervous system.

COG: Center of gravity.

COM: Center of mass.

COP: Center of pressure.

CSF: Cerebrospinal fluid.

CTSIB: Clinical test of sensory interaction on balance.

DC: Directional control.

EAE: Experimental autoimmune encephalomyelitis.

EC: Eye closed.

EDSS: Expanded disability status scale.

ENG: Electronystagmography.

EO: Eye opened.

EPE: Endpoint excursion.

GABA: Gamma amino butyric acid.

IgG: Immunoglobulin G.

IL: Interleukins.

LFA: Lymphocyte function-associated antigen.

LOS: Limits of stability.

MBP: Myelin basic protein.

MCT: Motor control test.

MHC: Major histocompatibility complex.

MMSE: Mini-Mental State Examination.

MRI: Magnetic resonance imaging.

MS: Multiple sclerosis.

MVL: Movement velocity.

MXE: Maximum excursion.

NAA: N-Acetyl-Aspartate.

NMO: Neuromyelitis optica.

OGB: Oligoclonal bands.

PPMS: Primary progressive Multiple sclerosis.

PRMS: Progressive relapsing Multiple sclerosis.

PSP: Progressive supranuclear palsy.

RRMS: Relapsing remitting Multiple sclerosis.

RT: Reaction Time.

SOT: Sensory Organization Test.

SPMS: Secondary progressive Multiple sclerosis.

TCR: T-cell receptor.

TNF: Tumor necrosis factor.

VEP: Visual evoked potentials.

List of Figures

Figure	Title	Page
Fig. (1)	Clinical course of Multiple sclerosis	19
Fig. (2)	Phases of gait cycle	72
Fig. (3)	Flow chart summarize the gait cycle.	75
Fig. (4)	The SMART balance master system	123
Fig. (5)	Feet placement on the force plate	125
Fig. (6)	The sensory balance assessment tests	127
Fig. (7)	Sensory organization analysis	129
Fig. (8)	Limits of stability test	133
Fig. (9)	Rhythmic weight shift test	137
Fig. (10)	Types of Multiple Sclerosis patients according to the	154
	clinical course	
Fig. (11)	The distribution of different sensory systems deficits	161
	which were analyzed by SOT in Multiple Sclerosis	
	patients	
Fig. (12)	Comparison of different parameters of Sensory	172
	Organization test between control subjects and	
	Multiple sclerosis patients	
Fig. (13)	Comparison between group I and group II regarding	174
	the results of the mean of composite of Limits of	
	Stability Test parameters	
Fig. (14)	Comparison between group I and group II regarding	179
	the results of walk across Test	

Fig. (15)	Comparison between group I and group II regarding	180
	Tandem Walk Test parameters	
Fig. (16)	Comparison between the three groups of Multiple	186
	Sclerosis patients regarding Limits of Stability Test	
Fig. (17)	Comparison between the three groups of Multiple	190
	Sclerosis patients regarding Walk Across Test	
Fig. (18)	Comparison between the three subgroups of Multiple	190
	Sclerosis patients regarding Tandem Walk Test	
Fig. (19)	Comparison between Multiple sclerosis patients according	194
	to MRI findings and their performance in Sensory	
	Organization Test (SOT)	
Fig. (20)	Comparison between Multiple sclerosis patients according	196
	to MRI findings and their performance in Limits of	
	stability test (LOS)	
Fig. (21)	Comparison between Multiple sclerosis patients according	199
	to MRI findings and their performance in Walk Across	
	Test	
Fig. (22)	Comparison between Multiple sclerosis patients according	201
	to Evoked Potentials findings and their performance in	
	Sensory Organization Test (SOT)	
Fig. (23)	Comparison between Multiple sclerosis patients according	202
	to Evoked Potentials findings and their performance in	
	Limits of Stability test (LOS)	
L		

List of Tables

Table	Title	Page
Table	Prognostic indicators in multiple sclerosis	20
(1)		
Table	Benign multiple sclerosis features	21
(2)		
Table	Monophasic Syndromes	24
(3)		
Table	Poser Criteria for diagnosis of Multiple sclerosis	30
(4)		
Table	The Revised McDonald's criteria for diagnosis of MS	31
(5)		
Table	Differential diagnosis of MS	35
(6)		
Table	Clinical Balance scales scores of the control group	145
(7)		
Table	Sensory Organization Test and Ankle Strategy results of the	147
(8)	control group	
Table	Limits of stability test (LOS) results of the control group	149
(9)		
Table	Rhythmic weight shift tests results (slow, moderate, and	151
(10)	rapid) results of the control group	
Table	Walk Across and Tandem Walk tests results of the control	153
(11)	group	
TD 11		1.70
Table	Step and Quick Turn test result of the control group	153
(12)		1.57
Table	Neurological assessment results of forty multiple sclerosis	157
(13)	patients (group II)	
Table	Different clinical scales movile of 40 moviting sclerosis	150
Table	Different clinical scales results of 40 multiple sclerosis	158
(14)	patients (group II)	
Table	Evoked Potentials findings in 40 multiple selections	159
Table (15)	Evoked Potentials findings in 40 multiple sclerosis patients (group II)	139
(15)	(group II)	

Table (16)	MRI findings according to the most common site of distribution of demyelination plaques in 40 multiple sclerosis patients (group II)	160
Table (17)	Sensory Organization Test and Ankle Strategy results of 40 multiple sclerosis patients (group II)	162
Table (18)	Limits of stability test (LOS) results of 40 multiple sclerosis patients (group II)	163
Table (19)	Rhythmic weight shift results of 40 multiple sclerosis patients	165
Table (20)	Walk Across and Tandem Walk tests results of 40 multiple sclerosis patients (group II)	167
Table (21)	Step and Quick Turn test results of 40 multiple sclerosis patients (group II)	167
Table (22)	Comparison between results of different clinical balance scales in group I (Control subjects) and group II (Multiple Sclerosis patients)	169
Table (23)	Comparison between group I (control) and group II (MS patients) regarding Sensory Organization Test and Ankle Strategy	171
Table (24)	Comparison between control subjects (group I) and multiple sclerosis patients (group II) regarding the results of Limits of Stability Test	173
Table (25)	Comparison between control subjects (group I) and multiple sclerosis patients (group II) regarding the results of Rhythmic Weight Shift Test	176
Table (26)	Comparison between control subjects (group I) and multiple sclerosis patients (group II) regarding the results of walk tests	178
Table (27)	Comparison between the three groups of Multiple Sclerosis patients regarding clinical disability and balance scales	182

Table (28)	Comparison of parameters of Sensory Organization test between the three groups of Multiple Sclerosis patients	184
Table (29)	Comparison between the three groups of Multiple Sclerosis patients regarding Limits of Stability Test	185
Table (30)	Comparison between the three groups of Multiple Sclerosis patients regarding Rhythmic Weight Shift Test	187
Table (31)	Comparison between the three groups of Multiple Sclerosis patients regarding Walk Tests.	189
Table (32)	Comparison between Multiple Sclerosis patients according to MRI findings and their performance in clinical disability and balance scales	192
Table (33)	Comparison between Multiple sclerosis patients according to MRI findings and their performance in Sensory Organization Test (SOT)	193
Table (34)	Comparison between Multiple sclerosis patients according to MRI findings and their performance in Limits of stability test (LOS)	195
Table (35)	Comparison between Multiple sclerosis patients according to MRI findings and their performance in Rhythmic Weight Shift Test	197
Table (36)	Comparison between Multiple sclerosis patients according to MRI findings and their performance in Walk across test and Tandem walk test	198
Table (37)	Comparison between Multiple sclerosis patients according to MRI findings and their performance in Step-quick turn test	198
Table (38)	Comparison between Multiple sclerosis patients according to Evoked Potentials findings and their performance in Sensory Organization Test	200
Table (39)	Comparison between Multiple sclerosis patients according to Evoked Potentials findings and their performance in Limits of Stability test	202

Table (40)	Comparison between Multiple sclerosis patients according to Evoked Potentials findings and their performance in Rhythmic Weight Shift Test	203
Table (41)	Comparison between Multiple sclerosis patients according to Evoked Potentials findings and their performance in Walking Tests	204
Table (42)	Correlations between the duration of illness, number of attacks of multiple sclerosis patients and clinical balance scales	205
Table (43)	Correlations between the duration of illness, number of attacks of multiple sclerosis patients and Posturography tests	207
Table (44)	Correlations between the EDSS, Timed 25-foot walk and Posturography tests	209
Table (45)	Correlations between the BBS, RMI, and SBS and Posturography tests	211

Abstract

Multiple sclerosis (MS) is a serious neurological disease which affects patients and their environment negatively. Movement, balance and walking impairments related to demyelination, axonal damage and the formation of sclerosis plaques in cerebral hemispheres, brain stem and spinal cord are wide spread in Multiple sclerosis patients. This study was designed to assess postural stability and gait abnormalities in patients with multiple sclerosis and included forty MS patients and forty control subjects, which were subjected to laboratory and radiological investigations, clinical balance scales and posturography tests. The performance of MS patients relative to control was poor in all balance scales and posturography tests. Among MS patients, relapsing remitting form was better in performance than the progressive forms.

Key words: Multiple Sclerosis, Balance, Gait, Posturography.

INTRODUCTION