

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

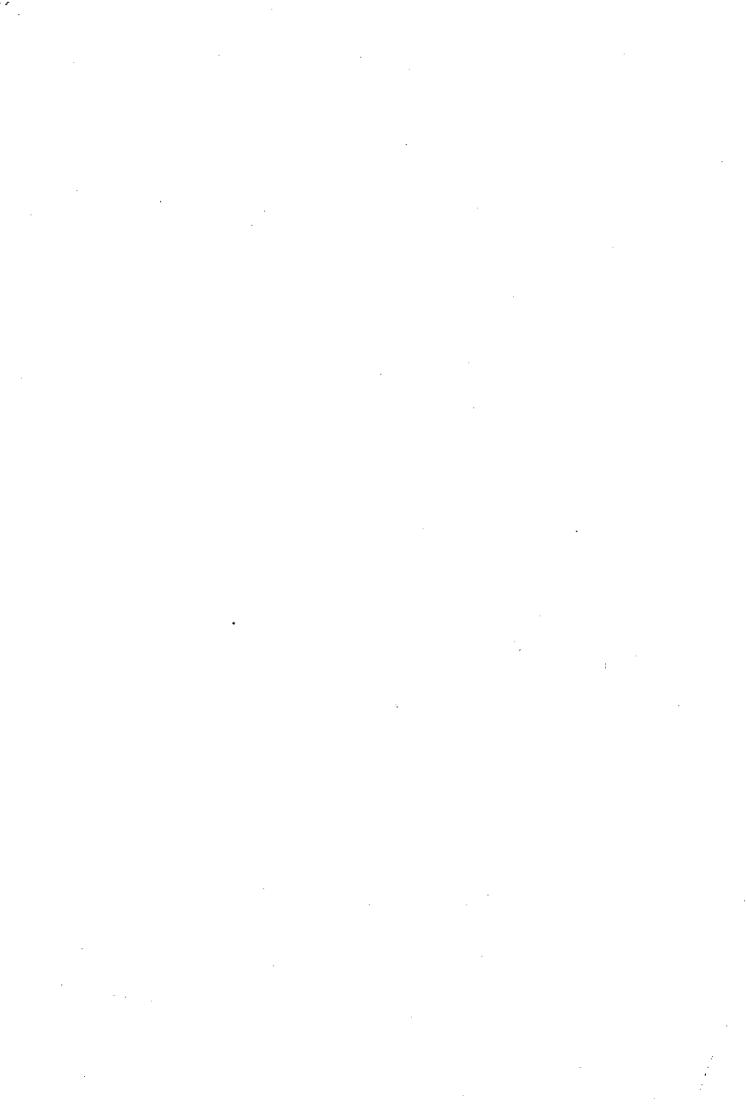
To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

FLOW PROPERTIES OF RAW GLAZE SUSPENSIONS

by GHADA HUSSEIN RIAD SALAMA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
CHEMICAL ENGINEERING


Under the Supervision of

Prof.Dr.: MAGDI F.ABADIR
Professor of Inorganic Technology
Cairo University
Chemical Engineering Department

Prof.Dr: ADLY A.Hanna
Professor of Inorganic Chemistry
National Research Centre
Dokki

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT March 2001

9178

FLOW PROPERTIES OF RAW GLAZE SUSPENSIONS

by GHADA HUSSEIN RIAD SALAMA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
CHEMICAL ENGINEERING

Approved by the Examining committee:

Prof. Dr.: MAGDI F. ABADIR

Prof. Dr.: HAMDI A. MOSTAFA

Prof. Dr.: SALAH M. El HAGGAR

Thesis Main Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT March 2001

Contents

	Page
LIST OF TABLES	iiv
LIST OF FIGURES	iiv
LIST OF SYMBOLS AND SUBSCRIPTS	xiv
ACKNOWLEDGEMENT	xvi
ABSTRACT	xvi
CHAPTER ONE INTRODUCTION	1
1-1 Historical Background	1
1-2 Definition of a Glaze	1
1-3 Classification of Glazes	2
1-3-1 Classification according to the method of formation of the glaze.	2
1-3-2 Classification according to the ware on which it is applied	3
1-3-3 Classification according to the maturing temperature temperature of the glaze.	3
1-4 Application of the Glaze	3
1-5 Aim of the Work	4
CHAPTER TWO LITERATURE REVIEW	5

	Page
2-1 Rheology	5
2-2 Fundamental properties of fluids	5
2-3 Classification of fluid suspensions	7
2-3-1 Time Independent fluids	8
2-3-2 Time Dependent fluids	12
2-3-3 Viscoelastic fluids	14
2-4 Rheological measurements-viscometry	14
2-4-1 Viscosity of suspensions	15
2-4-2 Effect of temperature on viscosity	18
2-4-3 Effect of volume fraction on viscosity	19
2-4-4 Effect of aging on viscosity	21
2-5 Methods of measuring viscosity	21
2-5-1 Rotational viscometers	21
2-5-2 Capillary viscometers	22
2-5-3 Falling-sphere viscometers	23
2-6 Laminar flow	24
2-6-1 Newtonian Fluids	24
2-6-2 Bingham Fluids	25
2 6 2 Dower Law Fluids	26

	Page
2-6-4 Real Plastic Fluids	27
2-7 Transition from laminar to turbulent flow in tubes	27
2-8 Friction factors in turbulent flow	29
2-9 Properties of raw glazes	30
2-9-1 Composition	30
2-9-2 Physical properties	30
2-9-3 Application	31
2-9-4 Defects of glazes	31
CHAPTER THREE EXPERIMENTALTECHNIQUES	34
3-1 Raw materials	35
3-1-1 Potash Feldspar	35
3-1-2 Kaolinite	36
3-1-3 Limestone	36
3-1-4 Silica	37
3-1-5 Recipe	37
3-2 The apparatus	3.7
3-2-1 Specification and description	37
3-2-2 Measuring procedure	40
3-2-3 Possibility of Thixotrony	40

	Page
3-3 Density of suspension	40
CHAPTER FOUR RESULTS & DISCUSSION	42
4-1 Results of non-aged suspension	42
4-1-1 Effect of concentration	41
4-1-2 Effect of particle-size	54
4-1-3 Effect of temperature	55
4-2 Results of suspensions aged for 8 weeks	59
4-2-1 Effect of concentration	59
4-2-2 Effect of particle size	63
4-2-3 Effect of temperature	68
4-3 Results of suspensions aged for 16 weeks	74
4-3-1 Effect of concentration	74
4-3-2 Effect of particle size	82
4-3-3 Effect of temperature	82
4-4 Results of suspensions aged for 24 weeks	87
4-4-1 Effect of concentration	87
4-4-2 Effect of particle size	91
4-5 Effect of aging	94
4-6 Generalized friction factor-Reynolds number chart	10

	Page
CHAPTER FIVE CONCLUSION	104
PEFERENCES	106

. .