

Evaluation of the Hypoglycaemic, Anti-Inflammatory and Anti-Oxidant Effects of Pomegranate (*Punica granatum* L.) Seed and Punicalagin on a Diabetic Model of Male Albino Rats

A Thesis

Submitted in Partial Fulfilment for the Degree of Master of Science in Zoology

By Aya Mohammed Hussein

B.Sc. (Zoology), 2011

Supervisors

Prof. Dr. Nadia Mohamed Abd El-Aziz El-Beih

Professor of Physiology, Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Gamal Ramadan Shebl Ramadan

Professor of Immunology, Department of Zoology, Faculty of Science, Ain Shams University

Dr. Enas Ali El-Husseiny

Lecturer of Physiology, Department of Zoology, Faculty of Science, Ain Shams University

ACKNOWLEDGEMENT

I would like to express my great gratitude and sincere thanks to **Prof. Dr. Nadia Mohamed Abd El-Aziz El-Beih**, Professor of Physiology, Department of Zoology, Faculty of Science, Ain Shams University, for suggesting the subject of this work, direct supervision, continuous encouragement, valuable criticism and guidance. Moreover, she gave me a lot of time for discussion in addition to advice concerning technical work and in different fields related to this research. What I have learned from her, not only in the scientific arena, but also in daily life that will greatly benefit my career and life in the future.

I also owe special thanks to **Prof. Dr. Gamal Ramadan Shebl Ramadan**, Professor of Immunology, Department of Zoology, Faculty of Science, Ain Shams University, for his continuous supervision, fruitful directions and highly insightful remarks, which rendered many difficulties faced me. In addition, he supported me with the statistical analysis program, gave me advice regarding the scientific writing, and reviewed work line by line and without that this work could not have been completed.

Also, I would like to express special thanks **Dr. Enas Ali El-Husseiny**, Lecturer of Physiology, Department of Zoology, Faculty of Science, Ain Shams University, for her great and continuous efforts, instructing me the scientific bases concerning technical work for the scientific research and customizing much time for discussion and reviewing the work.

My thanks to the head and all stuff members of Zoology Department, Faculty of Science, Ain Shams University, for continuous help and encouragement.

Finally, my deep gratitude to my family for their patience, moral support, continuous help, encouragement and praying.

LIST OF ABBREVIATIONS

AAP 4-Aminophenazone

ADP Adenosine diphosphate

ALAT Alanine aminotransferase

AlCl₃ Aluminium chloride

AMPK 5' Adenosine monophosphate-activated protein kinase

Ang II Angiotensin II

ANOVA Analysis of variance

AP-1 Activator protein-1

ASAT Aspartate aminotransferase

ATP Adenosine triphosphate

b.w Body weight

CAT Catalase

CCl₄ Carbon tetrachloride

cDNA Complementary deoxyribonucleic acid

CDNB 1-Chloro- 2, 4- dinitrobenzene

CE Catechin equivalent

Ct Cycle threshold

DAD Diode array detector

DEPC-H₂O Diethylpyrocarbonate water

D-GaIN/LPS D-Galactosamine sensitizes animals/lipopolysaccharide

DHBS 3,5-Dichloro-2-hydroxybenzene sulfonic acid

DNA Deoxyribonucleic acid

dNTPs Deoxynucleotide triphosphate

DPPH• 2,2-Diphenyl-1-picrylhydrazyl

DPPH-H Non-radical 2,2-diphenyl-1-picrylhydrazyl

DTNB 5, 5`Dithiobis (2 nitro-benzoic acid)

EDTA Ethylene diamine tetra-acetic acid

ELISA Enzyme-linked immunosorbent assay

FPJ Filtrated pomegranate juice

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

GLUT Glucose transporter

GPx Glutathione peroxidase

GR Glutathione reductase

GSH Reduced glutathione

GSSG Oxidized glutathione

GST Glutathione-S-transferase

H₂O₂ Hydrogen peroxide

HbA0 Non-glycated haemoglobin

HbA1c Glycated haemoglobin

HF/HS High fat/high sucrose

HFD High fat diet

HOMA Homeostasis model assessment

HOMA-IR Homeostasis model assessment- insulin resistance

HPLC High-performance liquid chromatography

HRP Horseradish peroxidase

i.p. Intraperitoneal

IDDM Insulin-dependent diabetes

IL Interleukin

iNOS Inducible nitric oxide synthase

IR Insulin resistance

IRS-1 Insulin receptor substrate-1

JNK c-Jun N-terminal kinase

LD₅₀ Lethal dose

MAPK Mitogen-activated protein kinase

mAU Milli absorbance unit

MDA Malondialdehyde

MeOH Methyl alcohol

MgCl₂ Magnesium chloride

MIT Mitochondria

mRNA Messenger ribonucleic acid.

NA Nicotinamide

NAD⁺ Nicotinamide adenine dinucleotide

NADP+ Nicotinamide adenine dinucleotide phosphate

NADPH Reduced form of nicotinamide adenine

NAELD Non-alcoholic fatty liver disease

NaNO₂ Sodium nitrite

NaOH Sodium hydroxide

NBT Nitroblue tetrazolium

NF-κB Nuclear factor-κB

NIDDM Noninsulin-dependent diabetes

NOx Nitric oxide

OA Osteoarthritis

OD Optical density

PBS Phosphate buffer saline

PCG Punicalagin

PMS Phenazine methosulphate

PSJ Pomegranate seed juice

PSO Pomegranate seed oil

qPCR Quantitative polymerase chain reaction

RNA Ribonucleic acid

RNS Reactive nitrogen species

ROS Reactive oxygen species

rpm Round per minute

RT-enzyme Reverse transcriptase

RT-PCR Reverse transcription polymerase chain reaction

SEM Standard errors of mean

SGLT1 Sodium-dependent glucose transporter 1

SOD Superoxide dismutase

SS Soluble solids

STZ Streptozotocin

T2DM	Type-2 diabetes mellitus
TBA	Thiobarbituric acid
TMB	3,3',5,5'-Tetramethylbenzidine
TNF-α	Tumour necrosis factor-α
UV	Ultraviolet
WHO	World health organization
XO	Xanthine oxidase
ZDF	Zucker diabetic fatty
	1 · · · · · · · · · · · · · · · · · · ·

LIST OF TABLES

Table's Number & Title		Page
	Materials and Methods	
I.	Groups' dosage and duration.	40
II.	Sequences of primers used for the real-time PCR analysis.	63
	Results	
1.	Body weight change (g) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punical gin (PCG).	65
2.	Food intake (g/rat/week) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).	68
3.	Liver relative weight (g/100 g body weight) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).	70
4.	Muscle relative weight (g/100 g body weight) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).	73

5. Serum glucose level (mg/dL) of non-diabetic and 75 diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG). Glycated haemoglobin (%) of non-diabetic and **79 6.** diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG). 7. Serum insulin level (µIU/mL) of non-diabetic and 81 diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG). Insulin resistance index of non-diabetic and diabetic 8. 83 male albino rats treated with either pomegranate seed juice (PSJ) or punical agin (PCG). Serum alanine aminotransferase (ALAT) activity 86 9. (U/mL) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG). Serum aspartate aminotransferase (ASAT) activity 88 10. (U/mL) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG). 11. Liver reduced glutathione level (mmol/g tissue) of non-92 diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG). 12. Liver glutathione reductase activity (U/g tissue) of 94

- non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 13. Liver glutathione peroxidase activity (U/g tissue) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 14. Liver glutathione S-transferase activity (U/g tissue) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 15. Liver superoxide dismutase activity (U/g tissue) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 16. Liver catalase activity (U/g tissue) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punical lagin (PCG).
- 17. Liver malondialdehyde level (nmol/g tissue) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 18. Liver nitric oxide level (μmol/g tissue) of non-diabetic 112 and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).

- 19. Serum tumour necrosis factor- α level (pg/mL) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 20. Expression of liver insulin receptor substrate-1 (IRS1) of non-diabetic and diabetic male albino rats
 treated with either pomegranate seed juice (PSJ) or
 punicalagin (PCG).
- 21. Expression of liver c-junk N-terminal kinase (JNK) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punical gin (PCG).

LIST OF FIGURES

Figur	Figure's Number & Title			
<u>Literature Review</u>				
I.	Chemical structure of streptozotocin (A) and nicotinamide (B).	9		
II.	The mechanism of streptozotocin (STZ)-induced toxic events in β -cells of rat pancreas.	11		
III.	Pomegranate fruit (A) and flowering plant (B).	16		
IV.	Chemical structures of punicalagin isomers and its metabolites.	20		
	Materials and Methods			
V.	Chromatograms of punical agin standard (A) and pomegranate seed juice (B).	36		
VI.	Amplification curve for real time-PCR showing Ct.	62		
VII.	Dissociation curve of real time-PCR.	62		
	Results			
1.	Body weight change (g) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punical gin (PCG).	66		
2.	Food intake (g/rat/week) of non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).	69		
3.	Liver relative weight (g/100 g body weight) of non-	71		

	diabetic and diabetic male albino rats treated with	
	either pomegranate seed juice (PSJ) or punicalagin	
	(PCG).	
4.	Muscle relative weight (g/100 g body weight) of non-	74
	diabetic and diabetic male albino rats treated with	
	either pomegranate seed juice (PSJ) or punicalagin	
	(PCG).	
5.	Serum glucose level (mg/dL) of non-diabetic and	76
	diabetic male albino rats treated with either	
	pomegranate seed juice (PSJ) or punicalagin (PCG).	
6.	Glycated haemoglobin (%) of non-diabetic and	80
	diabetic male albino rats treated with either	
	pomegranate seed juice (PSJ) or punicalagin (PCG).	
7.	Serum insulin level (µlU/mL) of non-diabetic and	82
	diabetic male albino rats treated with either	
	pomegranate seed juice (PSJ) or punicalagin (PCG).	
8.	Insulin resistance index of non-diabetic and diabetic	84
	male albino rats treated with either pomegranate seed	
	juice (PSJ) or punicalagin (PCG).	
9.	Serum alanine aminotransferase (ALAT) activity	87
	(U/mL) of non-diabetic and diabetic male albino rats	
	treated with either pomegranate seed juice (PSJ) or	
	punicalagin (PCG).	
10.	Serum aspartate aminotransferase (ASAT) activity	89
	(U/mL) of non-diabetic and diabetic male albino rats	
	treated with either nomegranate seed juice (PSI) or	

punicalagin (PCG).

- 11. Liver reduced glutathione level (mmol/g tissue) of 93 non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 12. Liver glutathione reductase activity (U/g tissue) of 95 non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 13. Liver glutathione peroxidase activity (U/g tissue) of 99 non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 14. Liver glutathione S-transferase activity (U/g tissue) of 101 non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 15. Liver superoxide dismutase activity (U/g tissue) of 104 non-diabetic and diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 16. Liver catalase activity (U/g tissue) of non-diabetic and 107 diabetic male albino rats treated with either pomegranate seed juice (PSJ) or punicalagin (PCG).
- 17. Liver malondialdehyde level (nmol/g tissue) of nondiabetic and diabetic male albino rats treated with
 either pomegranate seed juice (PSJ) or punicalagin
 (PCG).