

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

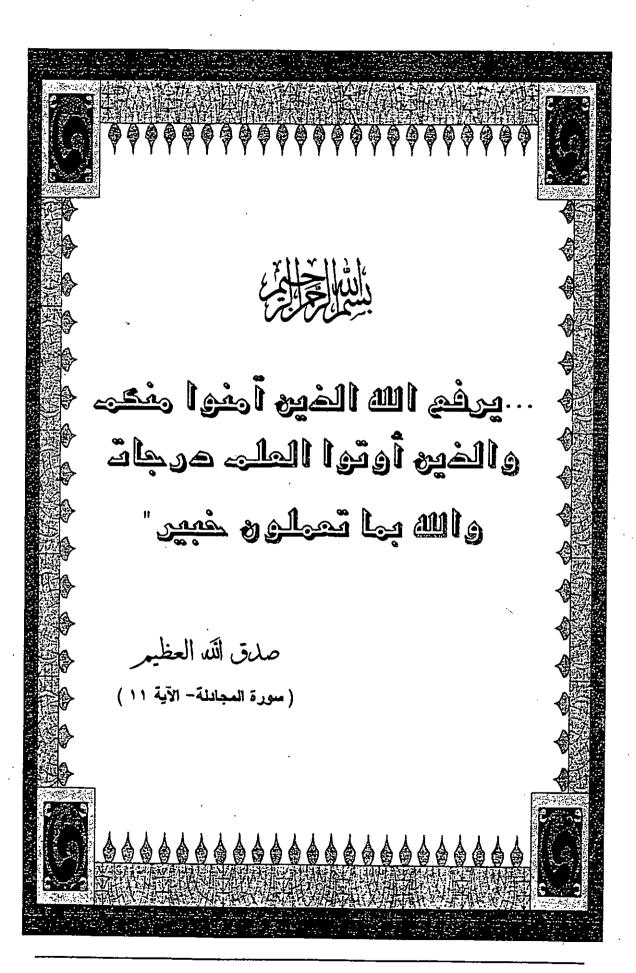
يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

STUDIES ON PHYSICAL PROPERTIES OF SOME POLYMERS IN SOLUTIONS


THISIS

SUBMITTED TO FACULTY OF SCIENCE,

SUEZ - CANAL UNIVERSITY

For THE M.Sc. DEGREE IN CHEMISTRY

BY
GABER MAHMOUD EL - ENANY
(B.Sc)

This work was undertaken at the Phys. and Math. Eng. Dep. Faculty of Engineering Suez-Canal University, also in Polymers and Pigments Department, National Research Center under the Supervision of:

1. Prof. Dr. A.S.Badran

A.S.Badvan

2. Prof. Dr. M. S. M. El-Gharib

N.S. El-Gharlis

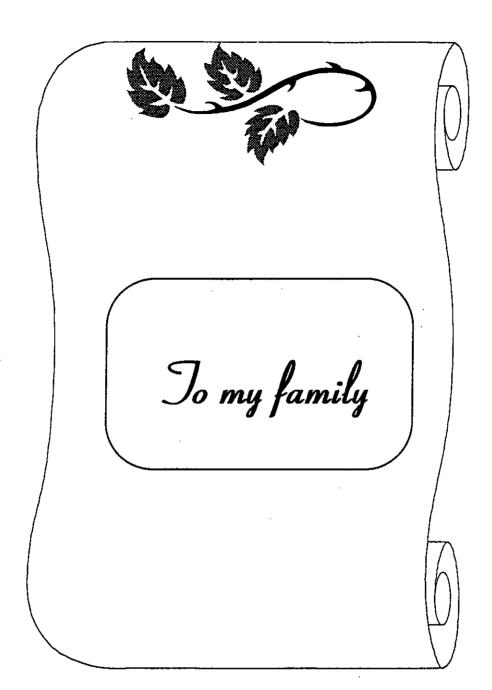
3. Dr. A. E. M. Ali

Department of
Polymers and Pigments
National Research Center

Faculty of Education
Suez-Canal University

Faculty of Science Suez-Canal University

ACKNOWLEDGMENT


I wish to express my deepest thanks and gratitude to *Prof. Dr. A.S. Badran*, Department of Polymer and Pigments, National Research Center, for suggesting the topics and supervision this work, continuous great effort and help to have this work done.

I wish to express my thanks to *Prof. Dr. M.S.M. El-Gharib*, Department of Chemistry and Physics, Faculty of Education, Suez Canal University, for his great effort, valuable guidance and help to have this work done.

Also, I wish to express my thanks to *Dr. A.E.M.Ali*, Department of Chemistry, Faculty of Science, Suez Canal University, for her great effort, valuable guidance and help to have this work done.

I am very grateful to *Dr. H.E. Nasr*, Department of Polymer and Pigment, National Research Center, for her great effort, valuable discussion and help to have this work done.

Also, I wish to express my thanks to *Dr. F. Mahmoud*, Department of Physics and Mathematical Engineering, Faculty of Engineering Suez Canal University. for her great effort, and valuable guidance.

CONTENTS

AIM OF THE WORK SUMMARY

		page
. I.	INTRODUCTION	
	General introduction	
1.	The Microemulsion	1
1.1.	Mechanism of formation of microemulsion	1 .
1.2.	Rheology	4
1.2.1.	Types of flow	-
1.2.1.1.	Newtonian flow	6
1.2.1.2.	Non-Newtonian flow	9
1.2.1.2.1.	Plastic flow	9 9
1.2.1.2.2.	Pesudoplastic flow	10
1.2.1.2.3.	Dilatant flow	10
1.2.1.2.4.	Thixotropy	
1.2.2.	Effect of particle size on viscosity	12 13
1.3.	Polymer solutions	•
1.3.1.	Dissolution and swelling of polymers	15
1.3.2.	Viscosity of polymer solutions	16
1.3.3.	Effect of kind of solvent on the viscosity of polymer	18
	solutions	
1.3.4.	Unperturbed dimensions of polymers	19
1.3.4.1		22
	Determination of unperturbed dimensions in	
1.3.4.2.	theta-solvent	23
i.J.4.Z.	Determination of unperturbed dimensions in good solvent	23

÷			
	1.4.	Polyethylene oxide	24
• .	1.4.1.	Chemical properties of poly(ethylene oxide)	24
	1.4.2.	Physical properties of poly(ethylene oxide)	25
	1.4.3.	Molecular mass determination	26
	1.4.4	Degradation of poly(ethylene oxide)	27
·	1.4.5.	Interfacial behavior	29
. •	1.4.6.	Uses of poly(ethylene oxide)	31
		Literature Survey	
	1.5.1	Microemulsion polymerization of some vinyl monomers.	33
	1.5.2.	Rheological behavior of emulsions	40
	1.5.3.	Behavior of poly(ethylene oxide) in solution	43
	1.5.3.1.	The degradation	43
	1.5.3.2.	Solution behavior	45
	1.5.3.3.	Rheology of dispersion	47
,	II	EXPERIMENTAL	
	2.1	Materials	50
	2.2	Preparation of sodium bisulphite adduct	51
√ ,	2.3.	Microemulsion polymerization of styrene	51
	2.4.	Determination of initial rate of polymerization	53
	2.5.	Calculation of the apparent energy of activation	54
	2.6.	Rheological measurement	55
	2.7.	Preparation of solution	57
	2.8	Viscosity measurements	57
	2.8.1.	Determination of the intrinsic viscosity	58
	2.8.2.	Determination of molecular weight	61

III	RESULTS AND DISCUSSION	:
3.1.	Kinetics of microemulsion polymerization of styrene	62
3.1.1.	Dependence of the rate of microemulsion polymerization	
	of styrene on initiator concentration	62
3.1.2.	Dependence of the rate of microemulsion polymerization	
	of styrene on emulsifier concentration	65
3.1.3	Dependence of the rate of microemulsion polymerization	•
	of styrene on monomer concentration	67
3.1.4.	Dependence of the rate of microemulsion polymerization	
	of styrene on polymerization temperature	69
3.2.	Rheologicl studies of the prepared PS microemulsion	73
3.2.1.	Rheological study at different polymerization temperature	73
3.2.2.	Rheological studies at different emulsifier concentrations	77
3.2.3.	Effect of initiator concentrations on the rheological	
	characteristics	80
3.2.4	Rheological studies at different monomer concentrations	83
3.3.	Solution properties of poly(ethylene oxide)	85
3.3.1.	Effect of ISP on intrinsic viscosity and Mark-Howink	
	constants	86
3.3.2.	Unperturbed Dimensions	92
3.3.3	Expansion factor of PEO	96
3.3.4.	Effective hydrodynamic radius of PEO	100
3.4	Degradation of poly(ethylene oxide) in water solution	102
•	REFERENCES	105

AIM OF THE WORK

AIM OF THE WORK

Water soluble or dispersed clear microemulsion polymer solutions have found increasing commercial applications in pharmaceuticals, detergents, adhesives, textiles and many other applications.

The aim of the first part of the present work is to study the kinetics and mechanism of the microemulsion polymerization of styrene monomer using developed redox pair initiation system which consists of potassium persulphate as oxidizing agent with p-methyl benzaldehde sodium bisulphite adduct as an reducing agent. It is of interest to prepare different polystyrene microemulsion latices under different conditions for studding the rheological parameters of the prepared latices.

In the last part of the present investigation we intend to study, the effect of solvent on the unperturped dimensions of the poly(ethylene oxide) (PEO) in series of mixed solvents exhibiting synergistic effect, evolution of the expansion factor and effective hydrodynamic radius for PEO in each solvent mixture. Also, we intend to study the effect of isopropanol on the autodegradation of PEO.