

THE USE OF DIFFERENT METHODS OF ANALYSIS IN STUDYING THE KINETICS OF DECOMPOSITION OF SOME SALTS OF USE IN THE CERAMIC INDUSTRY

By

Rahman Hussein Thabet Morsy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

THE USE OF DIFFERENT METHODS OF ANALYSIS IN STUDYING THE KINETICS OF DECOMPOSITION OF SOME SALTS OF USE IN THE CERAMIC INDUSTRY

By Rahma Hussien Thabet Morsy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

Under The Supervision of

Prof. Magdi F. Abadir	Dr. Snanrazad Ezz Eldin	
Professor of Chemical Engineering Chemical engineering Department Faculty of Engineering, Cairo University	Assistant Professor Faculty of Engineering Shebin Elkom Monofeya University	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

THE USE OF DIFFERENT METHODS OF ANALYSIS IN STUDYING THE KINETICS OF DECOMPOSITION OF SOME SALTS OF USE IN THE CERAMIC INDUSTRY

By Rahma Hussien Thabet Morsy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Magdi F. Abadir, Thesis Main Advisor

Prof. Salwa Rafat Mostafa, Internal Examiner

Prof. Mohamed El-Menshawy Shalabi, External Examiner Professor at Metal Research and Development Center, Egypt.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Rahma Hussien Thabet Morsy

Date of Birth: 19/7/1991 **Nationality:** Egyptian

E-mail: eng_rahma197@hotmail.com

Phone: 002 01001896124

Address: El Masged st., Marutaya, Faisal, Giza

Registration Date: 1/3/2014 **Awarding Date:** 2017

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Prof. Dr. Magdi. Foaud Abadir Dr. Shahrazad Ezz Eldin

Assistant Professor at faculty of Engineering Shebin

Elkom, Monofeya.

Examiners:

Prof. Mohamed El-Menshawy Shalabi (External examiner) Professor at Metal Research and Development Center, Egypt.

Prof. Salwa Rafat Mostafa (Internal examiner) Porf. Magdi.F. Abadir (Thesis main advisor)

Title of Thesis:

The use of different methods of analysis in studying the kinetics of decomposition of some salts of use in the ceramic industry

Kev Words:

Methods of Analysis; Decomposition; Kinetics; Ceramic industry.

Summary:

This thesis studies the different methods of analysis used in determining the kinetics and mechanisms of three different salts of use in the ceramic industry. Non-isothermal analysis was carried out for sodium borates (borax), basic zinc carbonate and basic cobalt carbonate. Four different methods of analysis has been performed to determine the reaction mechanism and calculating the values of activation energy. The results showed that Coats-Redfern method gives more reliability results and it was possible to determine the controlling mechanism as well. Otherwise Flynn-Wall-Ozawa method gives the values of activation energy higher than the figures obtained by other methods. The values obtained by Kissinger and linear regression methods are closed to that obtained by Coats-Redfern method. The reaction mechanisms have ranged from chemical reaction controlled mechanism, diffusion controlled mechanism and Erofeev model with formation of nuclei followed by grain growth.

Acknowledgments

First I am Grateful to "Allah"; the most merciful and the most gratuitous,

I'm deeply indebted and grateful to Prof. Magdi Abadir who played the basic role for this work to come to light.

Thanks are also due to Prof. Shahrazad Ezz Eldin for her continuous encouragement and help.

I also wish to express my thanks to my husband for his support.

Finally, I'm deeply grateful to my lovely mother and all my family for their help.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS		I
TABLE	OF CONTENT	II
LIST OF TABLES. VI		VI
LIST OF FIGURES		VII
LIST OF SYMBOLS		VIII
LIST O	F ABBREVIATIONS	IX
ABSTR	ACT	X
CHAPT	TER 1: INTRODUCTION	1
CHAPT	TER 2: LITERATURE REVIEW	3
2.1	Introduction to ceramic industries.	3
2.1.1	The classification of ceramic products	3
2.1.1.1	Traditional ceramics.	3
2.1.1.2	Modern ceramics	4
2.1.2	Ceramic processing.	4
2.1.2.1	Crushing and grinding	4
2.1.2.2	Screening.	5
2.1.2.3	Mixing	5
2.1.2.4	Shaping (forming)	5
	a) Slip casting	5
	b) Plastic forming by stiff mud process.	5
	c) Dry pressing.	5
2.1.2.5	Drying	5
2.1.2.6	Firing	6
	a) Sintering	6
	b) Vitrification.	6
	c) Grain growth	6
	d) Solid state reaction	6
	e) Allotropic transition.	6
2.2	Use of salts in ceramic industry	7
2.2.1	Introduction.	7
2.2.2	Borax (Sodium borates)	7
2.2.3	Basic zinc carbonate.	8
2.2.4	Basic cobalt carbonate	9
2.3	Heterogeneous reactions.	9

2.4	Factors affecting the rate of reaction	
2.5	Dependence of rate of reaction on temperature	
2.5.1	Activation energy	11
2.6	Selection of model.	11
2.6.1	Progressive-conversion model.	12
2.6.2	Shrinking core model.	13
2.6.2.1	Diffusion through gas phase controlling.	14
2.6.2.2	Chemical reaction controlling step.	14
2.6.2.3	Diffusion through ash layer controlling step.	14
2.6.2.4	Reaction controlled by more than one mechanism	15
2.6.2.5	Pseudo homogenous reaction	15
2.7	Thermal analysis.	16
2.7.1	Methods associated with a change in mass.	16
2.7.1.1	Static methods	16
2.7.2.2	Dynamic methods	16
2.7.2	Methods associated with a change in energy	17
2.7.3	Multipe techniques (thermal derivatography)	17
2.7.4	Experimental factors in the methods of thermal analysis	17
2.7.4.1	Rate of heating.	17
2.7.4.2	The position of temperature measurement	17
2.7.4.3	Role of shape and material of construction of the groove for the test sample	17
2.7.4.4	Covering of the sample	18
2.7.4.5	Influence of degree of grinding of the sample	18
2.7.4.6	Size of sample tested.	18
2.7.4.7	Effect of diluting the sample with a thermally inert substance	18
2.7.4.8	Interpretation of thermal curves.	18
2.7.5	Determination of kinetic parameters.	18
2.7.5.1	Isothermal calculations.	19
2.8	Non-isothermal calculations	19
2.8.1	Evaluation of thermodynamic activation functions	21
CHAPT	TER 3: EXPERIMENTAL WORK	22
3.1	Method and materials	22
3.1.1	Materials	22
3.1.2	Method	22
3.2	Plan of work.	22
3.3	Non-isothermal analysis.	23
3.3.1	TGA thermogravimetry analyzer.	23

CHAPT	TER 4: RESULTS AND DISCUSSION	24
4.1	Introduction	24
4.2	Thermal decomposition of Borax (Sodium Borate)	24
4.2.1	TG – DTG curves for the decomposition of borax.	25
4.2.2	Kinetics of decomposition of borax.	25
4.2.2.1	First decomposition step.	25
	a) Conversion-time curves.	25
	b) Coates –Redfern method: Determination of controlling step	25
	c) Flynn-Wall-Ozawa iso-conversional method.	27
	d) Multi-linear regression	28
	technique	
	e) Kissinger method	29
4.2.2.2	Second decomposition step	30
	a) Conversion-time curves	31
	b) Coates –Redfern method: Determination of controlling step	31
	c) Flynn-Wall-Ozawa iso-conversional method.	32
	d) Kissinger method.	33
4.2.2.3	Concluding remarks.	34
4.3	Thermal decomposition of basic zinc carbonate.	34
4.3.1	TG – DTG curves for the decomposition of basic zinc carbonate	34
4.3.2	Conversion – time curves for basic zinc carbonate	35
4.3.3.	Kinetics of decomposition of basic zinc carbonate	35
4.3.3.1	Avrami-Erofeev plots	35
4.3.3.2	Calculation of activation energy.	36
	a) Coates –Redfern method.	36
	b) Flynn-Wall-Ozawa iso-conversional method.	37
	c) Multi-linear regression	38
	technique	
	d) Kissinger method	38
4.3.3.3	Concluding remarks.	39
4.4	Thermal decomposition of basic cobalt carbonate	39
4.4.1	TG – DTG curves for the decomposition of basic cobalt carbonate	39
4.4.2.	Conversion-time curves for basic cobalt carbonate.	40
4.4.3	Kinetics of decomposition of basic cobalt carbonate:	41
4.4.4.1	Calculation of activation energy.	41
	a) Coates –Redfern method.	41
	b) Flynn-Wall-Ozawa iso-conversional method.	42
	c) Multi-linear regression	43

	technique	
	d) Kissinger method.	44
4.4.4.2	Concluding remarks.	44
4.5	Calculation of the activation energy according to the activated complex theory	45
4.5.1	Introduction.	45
4.5.2	Decomposition of borax.	45
4.5.1.1	First decomposition step.	45
4.5.1.2	Second decomposition step.	45
4.5.3	Decomposition of basic zinc carbonate.	46
4.5.4	Decomposition of basic cobalt carbonate	47
CHAP	TER 5: DISCUSSION AND CONCLUSIONS	49
REFER	RENCES	51

LIST OF TABLES

Table 2.1 Physical and Chemical Properties of Borax	7
Table 2.2 Physical and Chemical Properties of Basic Zinc Carbonate	
Table 2.3 Physical and Chemical Properties of Basic Cobalt Carbonate	9
Table 2.4 Common Forms of α/T Relations	16
Table 3.1 Salts and their Characteristics	22
Table 3.2 TGA-50 H Specifications	23
Table 4.1 Conversion and Temperature Data at 15 °C/min (Step 1)	26
Table 4.2 Calculated Activation Energy for different heating rates (Reaction control	ling
mechanism)	
Table 4.3 Calculated Values of Activation Energy (Step 1)	28
Table 4.4 Values of DTG Parameters at Heating Rate 10 °C/min	29
Table 4.5 Values of peak temperatures of the first decomposition step of borax	29
Table 4.6 Conversion and Temperature Data at 15 °C/min (Step 2)	31
Table 4.7 Selected Values for FWO Results (Step 2)	32
Table 4.8 Calculated Values of Activation Energy (Step 2)	32
Table 4.9 Summary of the results of decomposition of borax	
Table 4.10 Values of Avrami-Erofeev constant n	36
Table 411 Activation energies of decomposition of basic zinc carbonate	36
Table 4.12 Activation energies calculated from FWO plots	38
Table 4.13 Values of DTG Parameters at Heating Rate 5°C/min	38
Table 4.14 Result of activation energy from DTG method	38
Table 4.15 Summary of the results for the decomposition of basic zinc carbonate	39
Table 4.16 Calculated activation energies for decomposition of basic cobalt carbona	te
(reaction mechanism)	42
Table 4.17 Calculated activation energies for decomposition of basic cobalt carbona	te
by FWO method	
Table 4.18 Values of DTG Parameters at Heating Rate 10 °C/min	43
Table 4.19 Activation energies for decomposition of basic cobalt carbonate by the	
regression method	44
Table 4. 20 Summary of the results for the decomposition of basic cobalt carbonate.	44

LIST OF FIGURES

Fig (2.1): Potential Energy Profile for an Exothermic Reaction	11
Fig (2.2): Progressive-Conversion Model	12
Fig (2.3): Shrinking-Unreacted Core Model (I) Unchanged Particle Size (II) Shrin	king
Particle Size within Reaction	
Fig (2.4): Dimensionless Time against Conversion for Different Reaction Mechan	
Fig (3.1): Flow chart of the experimental work	
Fig (3.2): TGA-50	
Fig (4.1): TG – DTG curves for borax at heating rate 15°C/min	
Fig (4.2): Conversion – time curves for 1 st decomposition step of borax	
Fig (4.3): Coates – Redfern plot for the 1 st decomposition step of borax assuming	
chemical reaction controlling at heating rate 15°C	27
Fig (4.4): FWO Plot for first decomposition step of borax	
Fig (4.5): Kissinger Plot for first decomposition step of borax	30
Fig (4.6): Conversion – time curves for 2 nd step of decomposition of borax	330
Fig (4.7): Coates – Redfern plot for 2 nd decomposition step of borax assuming che	mical
reaction controlling at heating rate 15°C	331
Fig (4.8): Coates – Redfern plot for 2 nd decomposition step of borax assuming diff	fusion
controlling at heating rate 15°C	332
Fig (4.9): FWO Plot for second decomposition step of borax	33
Fig (4.10): Kissinger Plot for second decomposition step of borax	34
Fig (4.11): Basic zinc carbonate TG dissociation curve at 5°C/min	35
Fig (4.12): Conversion – time curves for decomposition of basic zinc carbonate	35
Fig (4.13): Avrami – Erofeev plots for decomposition of basic zinc carbonate	
Fig (4.14): Coates - Redfern plot for decomposition of zinc carbonate at heating ra	ite =
2°C/min	357
Fig (4.15): FWO plots for decomposition of basic zinc	
carbonate357	
Fig (4.16): Kissinger plot for decomposition of basic zinc carbonate	
Fig (4.17): Basic cobalt carbonate TG dissociation curve at 15°C/min	
Fig (4.18): Conversion – time curves of basic cobalt carbonate	
Fig (4.19): Coates – Redfern plot for main decomposition step of basic cobalt carb	
Fig (4.20): FWO Plot of decomposition of Basic Cobalt Carbonate	
Fig (4.21): Kissinger plot for decomposition of basic cobalt carbonate	45
Fig (4.22): Relation between ln k/T and 1/T for the 1st step of decomposition of	
borax	46
Fig (4.23): Relation between ln k/T and 1/T for the 2nd step of decomposition of	
borax	46
Fig (4.24): Relation between ln k/T and 1/T for the decomposition of basic zinc	
carbonate	47
Fig (4.25): Relation between $\ln k/T$ and $1/T$ for the decomposition of basic cobalt	4.0
carbonate	48

LIST OF SYMBOLS

Symbols	Variable	Unit
\boldsymbol{A}	Frequency factor	min ⁻¹
E	Apperant activation energy	J.mol ⁻¹
h	Plank's constant	$6.626 \times 10^{-34} \text{ m}^2 \text{.kg.s}^{-1}$
K	Reaction rate constant	$(\text{mol/m}^3)^{1-n}$.min ⁻¹
K_B	Boltzman constant	1.38x10 ⁻²³ m ² .kg.s ⁻² .K ⁻¹
n	Order of reaction	Dimensionless
P	Shap factor	Dimensionless
R	Universal gas constant	8.314 J.mol ⁻¹ .K ⁻¹
r_c	Radius of unreacted core	m
T	Absolute Temperature	K
T_{θ}	Initial temperature	K
t	Time	min
W	Weight	mg
Z	Number of collision	Collision.min ⁻¹
α	Conversion	Dimensionless
β	Heating rate	°C.min ⁻¹
τ	Time for complete conversion	min
ΔG^{+}	Gibbs free energy	J.mol ⁻¹
ΔH^{+}	Enthalpy of activation	J.mol ⁻¹
ΔS^{+}	Entropy of activation	J.mol ⁻¹ .K ⁻¹

LIST OF ABBREVIATIONS

TG	Thermogravimetry
F.W.O	Flynn-Wall-Osawa
C-R	Coates-Redfern
TGA	Thermogravimetric analysis
DTG	Derivative Thermogravimetry
DTA	Differential thermal analyzer

Abstract

Study of decomposition of salts is an important point of research when dealing with salts that have high temperature applications. A study of decomposition of some salts used in the ceramic industry was undertaken to further understand and quantitatively model this process; the effect of key processing parameters (including heating rate, temperature and time) on the decomposition process were examined. This thesis deals with the kinetics of non-isothermal analysis of borax (sodium borate), basic zinc carbonate and basic cobalt carbonate. Non-isothermal analysis was carried out on these four salts using a thermal analysis unit. The heating rate was varied (2,5,10 and 15°C/min). Every salt was heated in air from ambient temperature up to above its decomposition temperature. Kinetic calculations for non-isothermal runs were carried out and the values of activation energies calculated at different conversions using the Flynn-Wall-Ozawa and Kissinger methods. The average value of activation energy was calculated for borax, basic zinc carbonate and basic cobalt carbonate. Results were confirmed by applying the Coates-Redfern and Multi-linear regressions methods that helped disclosing the reaction mechanism.

Chapter 1: Introduction

Salts firing and salt glazing have been common practice in ceramic industry for centuries. Borax or sodium borates is an important boron compound, it's a salt of boric acid. It has wide variety of uses; it is a component of many detergents, cosmetics, enamel and glazes. It is also a component of glass, pottery and ceramics; which is used as an additive in ceramic slips and glazes to improve fit on wet, greenware and bisque.

Basic zinc carbonate is a material with a variety of applications, one of the most important applications is its use as a precursor for the production of zinc oxide by thermal decomposition process. Zinc oxide has numerous uses in the industry such as in electronics, solar cells and as an industrial catalyst. For material science applications, zinc oxide has high refractive index, high thermal conductivity binding, and antibacterial properties. Consequently, it is added into materials and products including plastics, ceramics, glass, cement, rubber, lubricants, pigments, adhesive, foods, and concert manufacturing etc.

In general cobalt compounds like, cobalt oxide is used as pigment in glass and ceramics, it provide blue coloring in porcelain and glass, also used as drying agent for paints, vanishes and inks.

Basic cobalt carbonate also has coloring application as it decomposes to cobalt oxide at high temperature. It tends to disperse better in glaze but can produce blisters because of the CO₂ gas evolution at high temperature.

Metallurgical transformation and reactions are mostly heterogeneous in nature. They involve more than one phase and are often characterized by the presence of distinct phase boundaries. In any given system, the rate of reaction at a given time depends basically on three factors, namely, the nature of the system, the time of reaction and the temperature. The reaction rate is usually determined as the rate of change of conversion. Reproducible kinetic results require assessing the mechanism of the reaction besides taking into consideration the effect of several parameters, such as purity of the material, its particle size, ambient atmosphere, etc...

When the reaction is associated with weight changes it is customary to study its kinetics using TGA to obtain values of activation energy. This is simply a record of the change in weight against temperature at constant heating rate.

There are numerous methods that can be used to this aim using TGA. Some of them can disclose the reaction mechanism besides calculating the value of activation energy. The most commonly applied method in this respect is the Coats – Redfern method and the main advantage of this method is that it needs only one TG run to disclose the reaction mechanism as well as calculating the activation energy. Another commonly used method that doesn't depend on the reaction mechanism is the Flynn – Wall – Ozawa (FWO) method, this method relies on performing at least four TG runs at different heating rates and to determine the temperatures at constant values of conversion. It has the advantage that it gives a value of activation energy that does not depend on knowing the reaction mechanism. There is another method to determine activation energy by using DTG curves; the DTG curve represents a relation between