Hearing dysfunction in Congenitally Hypothyroid Patients

Thesis

Submitted for partial fulfillment Of the Master Degree in Pediatrics

Presented by

Mohammed Ibrahim Abdul Rahman Abdullah
M.B. B.Ch.
Faculty of Medicine - Ain Shams University

Supervised by

Prof. Lerine Bahy El-Din El-Shazely

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Dr. Nadin Nabil Toaima

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Fathy Naeem Fatouh

Lecturer of Audiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I wish to express my sincere and deepest gratitude to **Prof. Dr. Larine Bahy EI Din,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University for choosing this interesting topic, meticulous revision of this work, constructive criticism, faithful guidance and tremendous support that enable me to accomplish this work.

I am profoundly grateful to **Dr. Nadin Nabil Toema**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University for her continuous encouragement, valuable support and generous recommendation.

My sincere thanks and deep appreciation goes to **Dr. Fathy Naeem Fatouh**, Lecturer of Audiology, Faculty of Medicine, Ain Shams University for his sincere advice and kind cooperation in all steps of this work.

I also wish to thank all my professors and colleagues for their encouragement and cooperation and for helping me to complete this work.

I also wish to thank my patients for their participating and help to complete this work.

Finally, I have to thank my parents for their love and support throughout my life. Thank you both for giving me strength to reach for the stars and chase my dreams. My sister and brothers deserve my wholehearted thanks as well.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
مرجعية غير معرّفة.	خطأ! الإشارة الـ
مرجعية غير معرّفةمرجعية غير معرّفة	خطأ! الإشارة الـ
Review of Literature	
Embryology of the Thyroid Gland	4
Physiology of the Thyroid	16
Fetal and Neonatal Thyroid Function	31
Congenital Hypothyroidism	36
Role of Thyroid Hormones in Brain Develop	ment 43
Effects of Congenital Hypothyroidism on the and Speech	
Material and Methods	
Results	65
Discussion	85
Summary	103
Conclusion	107
Recommendations	108
References	109
Arabic Summary	

List of Abbreviations

Abbr. **Title** : Acoustic stapedial reflex thresholds **ASRTs** cAMP : Cyclic adinosine monophosphate CH : Congenital hypothyroidism CHL : Conductive hearing loss **CNS** : Central nervous system **DNA** : Deoxyribonucleic acid **DPG** : Diphosphoglycerate DVA : Dilation of the vestibular aqueduct **ECF** : Extra cellular fluid **EVA** : Enlarged vestibular aqueduct IO : Intelligence quotient mRNA : Messenger ribonucleic acid **RIAs** : Radioimmunoassays **RNA** : Ribonucleic acid RT3 : Reverse triiodothyronine SNHL : Sensory neural hearing loss **T3** : Triiodothyronine **T4** : Thyroxine **TBG** : Thyroxine-binding globulin Tg : Thyroglobilin TH : Thyroid hormone TR : Thyroid receptor

TREs : Thyroid hormone response elements

TRH : Thyrotrophin Releasing Hormone

TSH : Thyroid stimulating hormone

UBs : Ultimobronchial bodies

List of Tables

Table No	Title	Page	No.	
Table (1):	Age distribution of cases and controls		65	
Table (2):	Sex distribution of cases and controls		65	
Table (3):	Medical history of cases and controls study			
Table (4):	Clinical data of patients and control gro	up	68	
Table (5):	Anthropometric measurements among and controls in the study	-		
Table (6):	Diagnosis of cases in the study		69	
Table (7):	Age at diagnosis, drug history (El-T dose and duration) and thyroid function cases in the study.	among		
Table (8):	Interpretation of audiometry results		70	
Table (9):	Clinical data of Patients having dysfunction			
Table (10):	Age distribution among 2 groups		73	
Table (11): Sex distribution among 2 groups. 73				
Table (12):	Comparison of group (A) and groaccording to congenital hypothymanifestations.	roidism		
Table (13):	Comparison between both groups accorage, weight, height, SDS Ht/age, SDS age at diagnosis, bone age, Free T4, TS El-thyroxin duration, El-thyroxin dose.	S wt/Ht, H level,		
Table (14):	Comparison of audiological ass between affected and non affected with congenital hypothyroidism	patients		

Table (15):	Comparison between groups 1,2 and 3 according to bone age, height, weight, free T4 and TSH
Table (16):	Comparison between groups 1, 2 and 3 according to SDS Ht/age, SDS wt/Ht, speech affection, prolonged physiological jaundice and MR
Table (17):	Correlation between hearing threshold levels and El-Thyroxin duration
Table (18):	Correlation between hearing threshold levels and TSH at diagnosis
Table (19):	Correlation between hearing threshold levels and T4 at diagnosis
Table (20):	Comparison between patients with normal hearing acuity and those with hearing impairment regarding: age at diagnosis, bone age and chronological age
Table (21):	Correlation between hearing acuity and diagnosis
Table (22):	Correlation between age at diagnosis and anthropometric measurements
Table (23):	Correlation between El-Thyroxin duration and anthropometric measurements
Table (24):	Comparison between cases with MR and those without MR according to age at diagnosis, bone age and chronological age
Table (25):	Comparison between cases with MR and those without MR regarding hearing acuity and history of speech difficulty

List of Figures

Figure No	. Title	Page No.
Figure (1):	Thyroid gland development	5
Figure (2):	Gross anatomy of the thyroid	10
Figure (3):	Microscopic appearance of the gland	-
Figure (4):	Chemistry of thyroxine and thyronine formation	
Figure (5):	Schematic representation character the synthesis and secretion of hormones by thyroid follicular cell	thyroid
Figure (6):	Regulation of thyroid gland action.	22
•	Congenital hypothyroidism in an months of age. The infant ate poor neonatal period and was constipated.	ly in the
Figure (8):	5 types of tympanograms, the move the middle ear system as pressure var	
Figure (9):	Pie chart showing sex distribution cases.	•
Figure (10):	Pie chart showing sex distribution controls.	-
Figure (11):	Pie chart showing diagnosis of case study	

ABSTRACT

Introduction: An association between thyroid hormone and auditory

function has long been recognized in patients with congenital

hypothyroidism (CH). Research with laboratory animals

demonstrated that thyroid hormone plays a significant role in the

maturation of inner ear structure.

Aim of the Work: To determine the rate of hearing dysfunction in

children with congenital hypothyroidism. Also to determine its relation

with factors such as congenital hypothyroidism severity and age at

starting of treatment.

Patients and Methods: This study was conducted on 30 congenitally

hypothyroid patients who were diagnosed by neonatal screening and

treated with El-thyroxin, for whom Pure tone audiometry were

performed to demonstrate the effect of CH on hearing. Results: there

was 10% mild to moderate sensory neural hearing loss (SNHL)

detected in the study group.

Conclusion: Sensory neural hearing loss is more common than

conductive hearing loss in children with congenital hypothyroidism.

Following up of hearing functions in children with congenital

hypothyroidism is mandatory. Delayed diagnosis and loss of

compliance to treatment contributes to the degree of hearing affection.

Key words: Congenital hypothyroidism, Hearing loss

vi

Introduction

Congenital hypothyroidism (CH) can be defined as a lack of thyroid hormones present from birth which, unless detected and treated early, is associated with irreversible neurological problems and poor growth. Some infants may develop a lack of thyroid hormones after birth and this may represent primary hypothyroidism rather than CH. Children with primary hypothyroidism do not experience the irreversible neurological problems that are seen with untreated CH. The incidence is twice as common in females (*Park*, 2005).

All babies are screened at birth "with their mothers' consent" using blood taken via a pinprick and analysed for TSH and T4 (*Foo*, 2002).

A high TSH and low T4 confirm the diagnosis (*Rastogi*, 2010).

The overall goals of treatment are to assure normal growth and development and psychometric outcome similar to genetic potential, by restoring the serum T4 concentration rapidly to the normal range followed by continued clinical and biochemical euthyroidism (*Rose*, 2006).

Thyroid hormone is necessary for normal development of the auditory system and the association between thyroid hormone and hearing development has long been recognized in patients with congenital hypothyroidism (CH), endemic cretinism and thyroid hormone resistance. Recent genetic studies confirmed the relation between thyroid hormone and hearing system development. So, CH, the most common endocrine disorder with an incidence rate of 1/4000-5000 live births also increase the risk of hearing impairment in children (*Knipper et al.*, 2001).

Although mental outcome of CH patients is improved if patients are treated early in infancy, during CH screening, but subtle neurological deficits such as fine motor coordination, attention deficient, speech delay, hearing impairment, and hearing problems may develop. Many studies, both in animal models and human patients have identified auditory system dysfunction among cases with thyroid disorders. Recent reports held after CH screening programs, indicate that mild hearing loss occurs in up to 20% of CH patients (*Bargagna*, 2000).

Hearing loss, specially its mild form in children may result in delayed speech and difficulties in comprehension and problems in receptive language, auditory processing and reading, which may persist, especially in those with delayed treatment. Therefore, considering the consequences of CH and its related hearing loss and also the fact that CH was more prevalent in our community (*Hashemipour*, 2004). The aim of this study was to determine the rate of hearing impairment in CH patients.

Aim of the Work

To determine the rate of hearing dysfunction in children with congenital hypothyroidism and its relation with factors such as severity of the disease and age at starting of treatment.

Embryology of the Thyroid Gland

Development of the Thyroid Gland

he adult thyroid gland in mammals is assembled from L two different embryological structures: the thyroid bud and ultimobronchial bodies (UBs). This composite origin reflects the dual endocrine function of the gland. The thyroid bud is derived from the endoderm of the primitive pharynx and will give rise to the Tg-producing follicular cells. The UBs originate from the fourth pharyngeal pouch and contain neural crest-derived cells that will become calcitoninproducing parafollicular cells. These structures migrate from their respective sites of origin, reach their final position in front of the trachea, and fuse to form the definitive thyroid gland. After this early ontogenetic phase, thyroid function begins but remains at a basal level; the later differentiation of the hypothalamic nuclei and the organization of the pituitaryportal vascular system guarantee maturation of thyroid system function (Fisher et al., 2009).



Figure (1): Thyroid gland development (Dixit et al., 2009)

Ontogenesis and Differentiation of the Thyroid Follicular Cell

The thyroid primordium of the human embryo is first visible at 20 to 22 embryonic days as a midline endodermal thickening in the floor of the primitive pharynx, caudal to the origin of the first branchial arch that forms the tuberculum impar. This thickened bud first forms a small endodermal pit and then an outpouching of the endoderm that is in contact with the endothelium of the developing heart. The epithelium of the