

التأثير المضاد لنبات البردقوش على تكاثر خلايا الكبد السرطانيه

رسالة مقدمة للحصول على درجة الماجستير في العلوم كجزء مكمل لمتطلبات رسالة الماجستير بكلية العلوم

الكيمياء الحيوية

بد الهادي

• • شادية عبد الحميد فتحي الكيمياء الحيوية كلية العلوم جامعة عين شمس

إستشاري مساعد الباثولوجيا الإكلينيكية والكيميائية مركز البحوث الطبية كلية الطب - جامعة عين شمس ذ مساعد الكيمياء الحيوية كلية العلوم جامعة عين شمس

Ain Shams University
Faculty of Science
Department of Biochemistry

The Antiproliferative Effect Of Origanum Majorana On Hepatocarcinoma Cell Line

A Thesis

Submitted for the degree of Master of Science As a Partial fulfillment for requirements of the master of Science

By Randa Mohamed Sami Abd Elhady

Under supervision of

Prof. Dr. Shadia A. Fathy

Professor of Biochemistry Faculty of Science Ain Shams University

Dr. Manal Asem Emam

Assistant Professor of Biochemistry
Faculty of Science
Ain Shams University

Dr. Sara Hassan Abo Agwa

Assistant Consultant of Clinical & Chemical Pathology
Medical Research Center
Faculty of Medicine
Ain Shams University

Biography

Name : Randa Mohamed Sami Abd Elhady

Date and place of birth : 16/8/1978, Egypt

Date of graduation : 1999

Degree : B.Sc Biochemistry-Chemistry, Faculty of

Science, Ain Shams University

Degree awarded : M.Sc. in Biochemistry

Date of registration : 2014

Supervisors : Prof. Dr. Shadia A.Fathy

Dr. Manal Asem Emam

Dr. Sara Hassan Abo Agwa

DECLARATION

I declare that this thesis has been composed by myself and the work of which it is a record has been done by myself. This thesis has not been submitted for a degree at this or any other university.

Randa Mohamed Sami Abd Elhady

DEDICATION

I dedicated this thesis to my family who has always supported me. Thanks to my mother who has always been so loving and caring. Thanks to my father for making me always strive for better. Thanks to my husband for his help.

ACKNOWLEDGEMENT

First, last and formost my greatest thanks to ALLAH who strengthened me during the course of this work and who is the source of my life and inspiration.

I would like to express my sincere appreciation and gratitude to my supervisor, Prof. Dr. Shadia A.Fathy, professor of biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, whose expertise, understanding and patience added considerably to my graduate experience. I appreciate her vast knowledge and skills in many areas (e.g., politics, ethics and interaction with participants), and her assistance in writing all my reports. It has been a great pleasure to work under her supervision. Her support and encouragement are highly appreciated.

I would also like to offer my deep thanks and grateful acknowledgement to Dr. **Sara Hassan Abo Agwa**, assistant consultant of Clinical & Chemical Pathology Medical Research Center, Faculty of Medicine, Ain Shams University, for her valuable support, kind help and great effort.

I also want to express my deepest thanks and sincere gratitude to Dr. **Manal Asem Emam**, assistant professor of biochemistry, Department of Biochemistry, Faculty of Science, Ain Shams University, for her devoted and valuable supervision, continuous guidance, sympathetic help, and encouragement through the course of this study.

CONTENTS

	Page
Abstract	V
List of abbreviations	vii
List of figures	ix
List of tables	xi
Introduction	1
Aim of the work	3
Chapter I: Reviewof literature	4
1.1. Global Epidemiology of HCC	4
1.2. Epidemology of hepatocellular carcinoma in Egypt	5
1.3. Risk factors for HCC	10
1.3.1. Cirrhosis	10
1.3.2. Hepatitis B virus (HBV)-infection	10
1.3.3. Hepatitis C virus (HCV) infection	11
1.3.4. Aflatoxins and HCC	14
1.3.5. Diabetes Mellitus as a late initiator to HCC	15
1.3.6. Schistosomiasis as regional risk factor is among	15
Nile basin population	
1.3.7. Non alcoholic steatohepatitis as predisposing factor	16
for HCC	
1.4. HCC prevention	19
1.5. Mechanisms of carcinogensis	22
1.6. HepG2 ceIl line	28

i

1.7. Nuclear factor-kappa B (NF-kB)				
1.7.1. The NF- kB transcription factor family				
1.7.2. TheNF-kB signaling pathway				
1.7.3. The NF-kB in HCC				
1.8. Anticancer natural products	36			
1.9. Origanum majorana L.				
1.9.1. Common names				
1.9.2. Scientific classification	38			
1.9.3. Some chemical constituents from <i>Origanum</i>	41			
majorana L.				
1.9.4. Properties of <i>Origanum majorana</i>	44			
1.9.4.1. Uses in traditional medicine	44			
1.9.4.2. Antioxidant and Antimicrobial activities				
1.9.4.3 Antidiabetic activities	48			
1.9.4.4. Anticoagulants and antiplatelets activities				
1.9.4.5. Insecticides activity	50			
1.9.4.6. Anti-Metastatic and Anti-Tumor effects	51			
Chapter II: Materials and Methods	53			
2.1. Materials	53			
2.1.1. Plant material	53			
2.1.2. The basic requirement for cell line growth	53			
2.1.3 HepG2 cell line	55			
2.2. Methods	56			

2.2.1. Extraction of <i>Origanum majorana</i>		
2.2.1.1. Preparation of water and ethanol extracts of	56	
Origanum majorana		
2.2.2. cell viability assay	57	
2.2.2.1. Prepration of the media	57	
2.2.2. Media exchange	58	
2.2.2.3. Subculture (passage) protocol	58	
2.2.24. Cell counting	60	
2.2.2.5 Giemsa staining of cells	65	
2.2.3. Treatment of HepG2 cells	65	
2.2.3.1. Pilot study	66	
2.2.3.2. A dose response test in a time course	68	
experiment		
2.2.4. Nuclear factor Kappa B gene expression RT-PCR	70	
analysis		
2.2.4.1. Total RNA extraction	70	
2.2.4.1.1. Principle and procedure	70	
2.2.4.2. Convert RNA-to-cDNA	71	
2.2.4.2.1. High Capacity RNA-to-cDNA Master mix	71	
components		
2.2.4.2.2. Preparing the Reverse Transcription	71	
Reactions With High Capacity RNA-to-cDNA Master Mix		
2.2.4.3. SYBR green RT-PCR analysis	72	

2.2.5. Statistical analysis of data	76
Chapter III: Results	77
3.1. Pilot study	78
3.2. Time course study	82
3.3. Microscopic observations of HepG2 cell morphology	86
3.4. The effect of <i>Origanum majorana</i> extracts on NF-kB	91
expression	
Chapter IV: Discussion	95
Conclusion and recommendations	104
Summary	106
References	110
Arabic summary	1

ABSTRACT

Randa Mohamed Abd Elhady. The antiproliferative Effect Of Origanum Majorana On Hepatocarcinoma Cell Line. Department of Biochemistry, Faculty of Science, Ain Shams University.

Hepatocellular carcinoma (HCC) is one of the most common cancer types with a high prevalence and it is the leading cause of cancer deaths worldwide. This study aimed to investigate the antiproliferative effect of water and ethanol extracts of *Origanum* majorana leaf on human hepatocellular carcinoma (HepG2) cell line through incubation of various concentrations of *Origanum* majorana extracts with HepG2 at different time intervals. The effects of water and ethanol extracts of O. majorana on HepG2 cell viability, nuclear factor kappa B (NF-kB) gene expression were examined. The results of the cell viability assays showed that water and ethanol extracts exhibited a highly significant inhibitory effect on HepG2 cell proliferation which was evidenced by a reduction in viable cell count. The results were confirmed by microscopical examination of cell morphology. Furthermore, the O. majorana extracts suppressed the activity of NF-kB gene expression of HepG2 cells compared to the control. The conclusions from this study suggest that marjoram extracts exhibit anti-proliferative effect against HCC through suppressing the activity of NF-kB gene expression.

Key words: HepG2, *Origanum majorana*, antiproliferative effect ,cancer , hepatocellular carcinoma, nuclear factor kappa B.

LIST OF ABBREVIATIONS

Abb.	Full term
AFB1	Aflatoxin B1
ANOVA	One-way analysis of variance
BAFF	B-cell activating factor
CO_2	Carbon dioxide
COX	Cyclooxygenase
dCTP	Deoxy cytadine triphosphate
dGTP	Deoxy guanine triphosphate
dTTP	Deoxy thymidine triphosphate
DDR	DNA damage response
DEN	Diethylnitrosamine
DEMSO	Dimethyl sulfoxide
DNA	Deoxy nucleic acid
EDTA	Ethylene diamine tetraacetic acid
EtOH	Ethanol
FBS	Fetal bovine serum
GJIC	Gap junctional intercellular communication
HBV	Chronic hepatitis B
HBsAg	Chronic hepatitis B antigen
HCC	Hepatocellular carcinoma
HCV	Chronic hepatitis C virus
HCV-Ab	Hepatitis C antibodies
HepG2	Human hepatoma cell line
H_2O_2	Hydrogen peroxide
ICAM	Intercellular adhesion molecule
IKB	I Kappa B alpha
IKK	I Kappa kinase alpha
IKK	I Kappa kinase B beta
IL-1	Interleukin 1
IL-6	Interleukin 6
iNOS	Inducible nitric oxide synthase
LPS	Lipopolysaccharides

List of Abbreviations

MAPK	Mitogen-activated protein kinase
MMP-2	Matrix metalloproteinases -2
MMP-9	Matrix metalloproteinases -9
NAFLD	Non-alcoholic fatty liver disease
NASH	Non alcoholic steatohepatitis
NEMO	Nuclear factor of kappa B essential modulator
NF-kB	Nuclear factor of kappa B
NIK	Nuclear factor of kappa B inducing kinase
NO	Nitric Oxide
NSAID	Non-steroid anti-inflammatory drugs
O.M	Origanum majorana
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction
PI3K	Phosphoinositide 3-kinase
RDA	Recommended dietary allowance
RNA	Riboxy nucleic acid
RelA/p65	Rel-like domain-containing proteins
RelB/p52	Rel-like domain-containing proteins
ROS	Reactive oxygen species
RT-PCR	Real time polymerase chain reaction
SD	Standard deviation
SOD	Superoxide dismutase
TNF	Tumor necrosis factor
uPA	Urokinase plasminogen activator receptor
VEGF	Vascular endothelial growth factor