Assessment of Vitamin D Status among Prediabetic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree In Endocrinology & Metabolism

 $\mathcal{B}y$ Randa Abd Elbaky Emam $\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{C}h.,$

Under Supervision of

Prof. Dr. Hanan Mohamed Ali Amer

Professor of Internal Medicine & Endocrinology Faculty of Medicine- Ain Shams University

Prof. Dr. Khaled Mahmoud Makboul

Professor of Internal Medicine & Endocrinology Faculty of Medicine- Ain Shams University

Dr. Maram Mohamed Maher Mahdy

Assistant Professor of Internal Medicine & Endocrinology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Above and before all, I would like to kneel thank to **Allah** the all Mighty, the most Merciful for the support, guidance and mercy He grants me throughout my life.

I want to express my deepest gratitude to **Prof. Dr. Hanan Mohamed Ali Amer**, Professor of Internal Medicine & Endocrinology, Faculty of Medicine, Ain Shams University, for her positive attitude and support.

I want to express my grateful thanks to **Prof. Dr. Khaled Mahmoud Makboul,** Professor of Internal Medicine & Endocrinology, Faculty of Medicine, Ain Shams University, for his positive attitude toward my work.

I would like to thank to **Dr. Maram Mohamed Maher Mahdy**, Assistant Professor of Internal Medicine &
Endocrinology, Faculty of Medicine, Ain Shams University, for
her guidance and suggestions which were of great value to
me.

Finally my truthful affection and love to My Family, who were and will always be, by my side all my life.

CONTENTS

Subject	Page No.
List of Abbreviations	
List of Tables	iii
List of Figures	V
Introduction	1
Aim of the Work	4
- Chapter (1): Vitamin D	5
- Chapter (2): Prediabetes	58
- Chapter (3): Vitamin D and DM	100
Patients ane Methods	108
Results	116
Discussion	139
Summary	151
Conclusion and Recommendations	153
References	154
Arabic Summary	

List of Abbreviations

Abb.	Full term
25(OH)D	25 hydroxy Vitamin
2-hpG	2 hour post prandial glucose
ADA	American diabetes association
AIDS	Auto immune diseases
ATP	Adult treatment panel
AVC	Aortic valve closure
BMD	Bone mineral density
BMI	Body mass index
CCC	Coronary collateral circulation
CD	Crohn,s disease
CF	Cystic fibrosis
CHD	Coronary heart disease
CI	Confidence interval
CRP	C reactive protien
CTX	C-terminal peptide
CVD	Cardio vascular disease
DBP	Vitamin D Binding protien
DM	Diabetes millitus
DPP	DM preventing program
DV	Daily value
FBG	Fasting blood glucose
GC	Group specific component
GI	Glucose intolerance
GLP-1	Glucagon like peptide 1

Abb.	Full term
HBA1C	Glycated haemoglobin
HDL	High density lipoprotine
IDF	International DM fedration
IFG	Impaired fasting glucose
IGF-1	Insulin like growth factor
IGH	Impaired glucose homeostasis
IGT	Impaired glucose tolerance
IR	Insulin resistance
IRS-1	Insulin receptor substrate-1
IUS	International units
MED	Minimal erythema dose
MI	Myocardial infarction
MONICA	Monitoring trends and determinants in cardiovascular disease
MS	Multiple sclerosis
NCEP	National cholesterol education program
NGR	Normal glucose regulation
NTX	N-terminal xelopeptide
OGTT	Oral glucose tolerance test
PCOS	Poly cystic ovary syndrom
PTH	Parathyroid hormone
RA	Rheumatoid arthrities
RANKL	Receptor activator of NF KB ligand
RDAS	Recommended dietary allowances
RXR	Retinoid x receptor
SAD	Seasonal affective disorder

List of Abbreviations

Abb.	Full term
SPF	Sun protection factor
TGF	Transforming growth factor
UVB	Ultravilot B
VDR	Vitamin D receptor
VDRE	Vitamin D response elements
WHO	World health organization

List of Tables

Tables No.	Title	Page No.
Table (1):	Skin type categories from Food and	22
	Drug Administration.	
Table (2):	Selected Food Sources of Vitamin D	26
Table (3):	Recommended Dietary Allowances	33
	(RDAs) for Vitamin D	
Table (4):	USA Classification of Glucose Tolerar	ice. 59
Table (5):	Criteria utilized for glucometabolic	61
	classification according to WHO	
Table (6):	Mediators of immune cells and	75
	adipocytes involved in the regulation	n of
	insulin resistance.	
Table (7):	Comparison between groups as regard	rd 117
	the clinic-demographic data:	
Table (8):	Comparison among groups as regard	122
	diabetes related laboratory data	
Table (9):	Comparison between groups as regard	rd 126
	other laboratory data.	
Table (10):	Comparison between groups as	128
	Vitamin D.	
Table (11):	Correlations between Vitamin D leve	l 129
	and other parameters.	
Table (12):	Correlations between Vitamin D leve	l 131
	and other parameters in each group.	

List of Figures

Figure No.	Title Pa	ige No.
Fig. (1):	Structure of vitamin D3 and D2 and their	. 6
	respective precursors, 7-	
	dehydrocholesterol, and ergosterol.	
Fig. (2):	Sources, sites, and processing of vitamin	D 7
	metabolites	
Fig. (3):	Calcemic and phosphatemic biological	10
	actions of Vitamin D in mammals.	
Fig. (4):	The complex vitamin D system including	15
	the regulation of vitamin D serum	
	concentrations, transcellular transport	
	and intracellular metabolism.	
Fig. (5):	Vitamin D production in epidermal strata	17
	of the skin.	
Fig. (6):	Bone meniral dinesty	23
Fig. (7):	Overlap between IFG & IGT.	59
Fig. (8):	Schematic of insulin receptor structure.	71
	The mature cell surface insulin receptor i	S
	composed of two α & two β subunits that	
	are organized into two separate modules	
	(Pathophysiology of Insulin resistance)	
Fig. (9):	Finnish DM Risk Score (FINDRISC) to	78
	assess the 10-year risk of type 2 DM in	
	adults. Mod	
Fig. (10):	Prevalence of Metabolic Syndrome in	84
	Different Categories of Pre-DM in	
	European Population.	

Figure No	o. Title	Page No.
Fig. (11):	The hazard ratio was adjusted for ag	ge, 90
	sex, body mass index, systolic blood	
	pressure, cholesterol, and smoking. l	DM,
	DM mellitus; CI, confidence interval	
Fig. (12):	The mean and 95% CIs (within whic	th the 93
	curve lies) generated from a	
	mathematical model and the combin	ıed -
	coefficient for fasting (A), and two-h	our
	postprandial (B) glucose values	
Fig. (13):	The age distribution in the four grou	ips. 118
Fig. (14):	The BMI distribution in the four grou	ups. 119
Fig. (15):	Comparison of the mean systolic BP	in 120
	the four groups.	
Fig. (16):	Comparison of the mean diastolic BF	o in 121
	the four groups.	
Fig. (17):	Comparison of the mean fasting bloc	od 123
	glucose in the four groups.	
Fig. (18):	Comparison of the mean fasting ins	ulin 124
	in the four groups.	
Fig. (19):	Comparison of the mean HOMA in th	ne 125
	four groups.	
Fig. (20):	Comparison of the mean Ca in the fo	ur 127
	groups.	
Fig. (21):	Comparison of the mean vitamin D in	n the 128
	four groups.	
Fig. (22):	Correlation of vitamin D (ng/ml) an	d BMI 133
	(kg/m2) in group 2 (IFG).	

Figure No	o. Title	Page No.
Fig. (23):	Correlation of vitamin D and albumin i group 2 (IFG).	n 134
Fig. (24):	Correlation between vitamin D and systolic blood pressure in group1(IGT)	135).
Fig. (25):	Correlation of vitamin D and fasting bl glucose in the control group.	ood 136
Fig. (26):	Receiver Operating Characteristic (RO curve to define the best cutoff to	C) ₁₃₇
	differentiate normal from cases	

Assessment of Vitamin D Status among Prediabetic Patients

Abstract

Background: Diabetes mellitus (DM) is a rising public health problem and a common chronic metabolic disease worldwide. It represents a group of metabolic diseases that are characterised by hyperglycaemia due to an absolute or relative deficiency of insulin release and insulin resistance or both. Diabetes mellitus is considered a leading cause of mortality due to its microvascular and macrovascular drawbacks. Resistance to insulin mediated glucose uptake plays a major part in the development and clinical dilemma of cases with type 2 DM. Aim: The aim of this study was to evaluate vitamin D status in pre-diabetic in cases with impaired glucose tolerance and impaired fasting. Subjects: This is a Cross sectional study that was conducted on 80 cases that included and divided into four groups. Prediabetic group of 40 consecutive patients (with IFG and IGT), 20 cases type 2 DM and the healthy group of 20 control cases. Results: The study was significant -ve correlation between vitamin D and BMI in group 2 (IFG) (r = -0.461 and p = 0.041), systolic blood pressure among cases with IGT (r= -0.577 and p=0.008), and Albumin among group 2 (IFG) (r= -0.606 and p= 0.005). There was a statistically significant difference among the groups as regards the BMI, systolic and diastolic BP, mean fasting blood glucose and HOMA (P< 0.01).

Keywords: DM: Diabetes mellitus, Vitamin D, IFG: Impaired fasting glucose, IGT: Impaired glucose tolerance, BMI: Body mass index.

Introduction

Aim of the Study

Vitamin D

Prediabetes

