

AIN SHAMS UNIVERSITY FACULTYOF ENGINEERING DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

Utilization of recycled tire composites in engineering products

A thesis Submitted in partial fulfillment of the requirement of the Degree of Master of Science in Mechanical Engineering

By Kareem Fathy Mohamed Abo El-Enin

B.Sc.in Mechanical Engineering, 2012

Supervised by

Prof. Dr. M. Hazem Abd EL-Latif

Dr. Ayman Abdel-Wahab

Cairo - 2016

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Design and Production Engineering

Utilization of Recycled Tire Composites in Engineering products

by

Kareem Fathy Mohamed Abo El-enin

Bachelor of Science in Mechanical Engineering
Design and Production Engineering Department
Faculty of Engineering, Ain Shams University, 2012

Supervising Committee

Name and Affiliation	Signature
Prof. Dr. M. Hazem Abd EL-Latif, ASU	
Dr. Ayman Aly Abdel Wahab, ASU	
	Date: /

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Utilization of Recycled Tire Composites in Engineering Products

by

Kareem Fathy Mohamed Abo El-enin

Bachelor of Science in Mechanical Engineering
Design and Production Engineering Department
Faculty of Engineering, Ain Shams University, 2012

Examining Committee

Name and Affiliation	Signature
Prof. El-Sayed Yousef El Kady President of Banha University	
Prof. Samy Jimy Ebied Professor at Faculty of Engineering, Ain Shams University	
Prof. M. Hazem Abd El- Latif Professor at Faculty of Engineering, Ain Shams University	
·	Date: / /

STATEMENT

This thesis is submitted in partial fulfillment of Master of Science degree in mechanical engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of this thesis has been submitted for a degree or qualification at any other scientific entity.

Signature

Kareem Fathy Mohamed Abo El-Enin

Researcher Data

Kareem Fathy Mohamed Abo

El-Enin

Date of birth 02-03-1988

Place of birth Cairo, Egypt

Academic Degree B.Sc.

Name

Field of specialization Mechanical Engineering

University issued the degree Ain Shams University

Date of issued degree 2012

Current job Industrial and planning

engineer

SUMMARY

The objective of this research is the utilization of waste tire rubber to get novel polypropylene composite materials of satisfactory properties to suit various applications.

Treatment of waste tire rubber particles is done by H₂So₄ to enhance the adhesion at the interface between the waste tire rubber particles and the PP matrix that affects the properties of resulted composites.

Optimum composition of the composite is selected by studying various rubber particles weight percentage 5%, 10%, 20%, 30%, 40% and 50% and by using different rubber particle sizes.

The physical properties such as water absorption and mechanical properties such as bending strength, elastic modulus, compressive yield strength, hardness and impact strength are studied for the PP-waste tire rubber particles composites and the optimum composition of the composite is selected to suit certain engineering application. Also, dimensional stability of composite of the highest impact strength is studied.

Investigation of the fracture surface of the specimen is done using SEM to evaluate the interface between rubber particles and polypropylene.

Keywords: Recycling of tires, waste tire rubber particles, Polypropylene, Composite, Mechanical properties for composites.

ACKNOWLEDGEMENT

First and above all, I praise God, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them.

Many cordial thanks for accepting me as a Master student, your warm encouragement, thoughtful guidance, critical comments, and correction of the thesis, **Prof. Dr. M. H. Abd El-Latif**, professor of Production Engineering, Faculty of building, Ain Shams University.

I am just as much indebted to **Dr. Ayman Aly Abdel wahab, Dr. Ramdan El-Gamasy, Eng. Ahmed Hassan, Eng. Hassan El-Hadad, Eng.** because of you all this was achieved thanks a lot for your support.

A special measure of appreciation is extended for my lovely wife **Eng. Bassant Hany**, Ain Shams University. Without her nothing of this would see the sun, she is very intelligent, supportive, reliable, and over this entire mother of my son **Mounir**, god bless both of them.

A special thank for My Father & mother: Fathy Mohamed, Eman Abdallah, your efforts supporting me in whole life is the reason what I am now any words can't describe what my feelings toward you.

Also, my mother in Law she is a marvels person that can gave her life just to make us happy god bless you **Dr. Fayka–Abdel hamid, Eng. Sherif Hany and Dr. Yassmine El-kashef** for their encouragement and support.

List of abbreviations

E Young's modulus or elastic modulus.

GTR Ground tire rubber

CPR Composite of PP and GTR

PP Polypropylene.

TMA Thermo mechanical analysis

DSC Differential scanning calorimetry

FTIR Fourier transformation

Wt.% Weight percent

CTE Coefficient of thermal expansion

TDF Tire derived fuel

U CPR Untreated GTR-PP composite

T CPR Treated GTR-PP composite

List of Tables

Table 2.1 Rubber devulcanization techniques	16
Table 2.2 Composition of truck and passenger tires in Europe [10]	17
Table 2.3 The properties of some thermosetting and thermoplastic matrices	26
Table 2.4 Polymer composites manufacturing techniques	28
Table 2.5 Table 2 properties of natural fibers and other commonly used fibers	S
[21]	32
Table 3.1 Balance specifications	58
Table 3.2 FTIR apparatus specifications	59
Table 3.3 Thermal mixer specification	61
Table 3.4 Press specifications	62
Table 3.5 Impact machine specification	64
Table 3.6 Universal testing machine specifications	65
Table 3.7 Hardness durometer specifications	67
Table 3.8 DSC specifications	69
Table 3.9 TMA specifications	71

List of Figures

Figure 2-1 Schematic drawing of rubber roll mill	13
Figure 2-2 De-vulcanization and reclaiming	14
Figure 2-3 commonly used matrices and reinforcements	22
Figure 2-4 Composite products a, g) flooring, b, c) car stops, d) car bumper,	e)
marine fender f) rail sleepers and h) shock absorber	52
Figure 3-1 flow chart illustrating the research work strategy	55
Figure 3-2 A flow chart illustrating the tests made	
Figure 3-3 GTR different mesh sizes	57
Figure 3-4 Electronic balance with density attachment	58
Figure 3-5 FTIR apparatus	59
Figure 3-6 steps for making polymeric tensile samples	60
Figure 3-7 Thermal mixer	61
Figure 3-8 The pressing die	63
Figure 3-9 Impact test machine	64
Figure 3-10 Bending attachment used in bending test	65
Figure 3-11 Compression attachment used in compression test	66
Figure 3-12 Hardness shore D durometer	67
Figure 3-13 DSC apparatus	69
Figure 3-14 Typical heating curve	70
Figure 3-15 TMA apparatus	72
Figure 3-16 Coding of test samples	74
Figure 3-17 SEM apparatus	75
Figure 4-1 untreated GTR (a) and porous treated GTR (b)	77
Figure 4-2 FTIR CURVE for treated and untreated GTR	78
Figure 4-3 Typical load deflection curve for PP under bending load	79
Figure 4-4 Typical load deflection curve for PP under compression load	80
Figure 4-5 Typical DSC curve for PP	81
Figure 4-6 Typical TMA curve for PP	82
Figure 4-7 Effect of GTR wt.% on the impact strength of CPR of GTR size :	5
mesh	83
Figure 4-8 Effect of GTR wt.% on the impact strength of U CPR of size 40	
mesh and 5 mesh	84
Figure 4-9 Typical load deflection curve for CPR under bending load	85
Figure 4-10 Effect of GTR wt.% on the bending strength of U CPR and T C	
of size 5mesh	87

Figure 4-11 Effect of GTR wt.% on the bending strength of U of	
mesh and 5 mesh	87
Figure 4-12 Effect of GTR wt.% on the elastic modulus of CPF	R of size 5
mesh	88
Figure 4-13 Effect of GTR wt.% on the elastic modulus of U C	PR of size 40
mesh and 5 mesh	89
Figure 4-14 Effect of GTR wt.% on the compressive yield strer	ngth of CPR of
GTR size 5 mesh	90
Figure 4-15 Effect of GTR wt.% on the compressive yield strer	ngth of U CPR of
GTR size 40 mesh and 5 mesh	91
Figure 4-16 Effect of GTR wt.% on the hardness of CPR of GT	CR size 5 mesh 92
Figure 4-17 Effect of GTR wt.% on the hardness of U CPR of	
mesh and 5 mesh	
Figure 4-18 Effect of GTR size on the impact strength of CPR	at 40 wt.%94
Figure 4-19 Effect of GTR size on the bending strength of CPR	R at 40 wt.%95
Figure 4-20 Effect of GTR size on the elastic modulus of CPR	at 40 wt.%95
Figure 4-21 Effect of GTR size on the compressive yield streng	
wt.%	
Figure 4-22 Effect of GTR size on the hardness of CPR at 40 w	/t.%96
Figure 4-23 Effect of GTR wt.% on the water absorption % of	
mesh	
Figure 4-24 Effect of GTR wt.% on the water absorption % of	U CPR of size 40
mesh and 5 mesh	
Figure 4-25 Effect of GTR size on the water absorption % of C	PR at 40 wt.% 98
Figure 4-26. H ₂ SO ₄ treated GTR 40wt.% in PP composites	
Figure 4-27. Untreated GTR at 30 wt.%	
Figure 4-28 Treated GTR showing good adhesion that leads to	
particle	
Figure 4-29 cavities associated with particles agglomeration for	
GTR	
Figure 4-30 DSC curve	_
Figure 4-31 TMA curve	
1 1guic 7-31 Tivira cui ve	104

Table of Contents

Examiners Committee	. Error! Bookmark not defined.
STATEMENT	iii
Researcher Data	iv
SUMMARY	v
ACKNOWLEDGEMENT	vi
List of abbreviations	vii
List of Tables	viii
List of Figures	ix
Table of Contents	xi
Chapter 1 INTRODUCTION	1
Chapter 2 LITERATURE SURVEY	4
2.1 Rubber	6
2.1.1 Classification of rubber	6
2.1.2 Importance of Recycling Waste Tires .	8
2.1.3 Availability of tires	9
2.1.4 Recycling, Reclaiming or reusing of w	vaste tires11
2.1.5 Devulcanization of rubber	14
2.1.6 Production of ground tire rubber (GTR	3)16
2.1.6.1 Ambient grinding	18
2.1.6.2 Cryogenic grinding	18
2.1.6.3 Wet grinding	18
2.1.6.4 Extrusion	18
2.1.6.5 Abrasion	19
2.2 Polymers properties and their application	ns20
2.3 Composites	21
2.3.1 Polymer Matrix Materials	24
2.3.2 Manufacturing of composites	27

2.3.3 Composites based on thermoplastics matrix	31
2.3.4 Polymer rubber composites	34
2.3.5 GTR filled thermoplastic composites	35
2.3.6 Compatibilization	40
2.3.6.1 Physical compatibilization	40
2.3.6.2 Thermo-mechanical compatibilization	41
2.3.6.3 Chemical compatibilization	44
2.3.6.3.1 Non-reactive compatibilization	45
2.3.6.4 Reactive compatibilization	46
2.3.7 Effect of surface characteristics and GTR size on GTR filled thermoplastic composites.	49
2.4 Applications	50
Chapter 3 EXPERIMENTAL WORK	54
3.1 Introduction	54
3.2 Work strategy	55
3.3 Ground tire rubber (GTR)	57
3.3.1 Size selection	57
3.3.2 Chemical treatment of GTR	57
3.3.3 Density determination	58
3.3.4 Fourier transform infrared (FTIR)	59
3.3.5 GTR preparation	60
3.4 Polypropylene (PP)	60
3.4.1 Polymer preparation	60
3.4.2 Polymer test samples	60
3.4.2.1 Heating the polymer granules	60
3.4.2.2 Hot pressing to produce a polymeric board	62
3.4.3 Polymer testing	63
3.4.3.1 Mechanical test	63
3.4.3.2 Physical tests	67
3.4.3.3 Thermal tests	68
3.5 Composites of PP filled with GTR (CPR)	72

	3.5.1 Preparation CPR test samples	.72
	3.5.2 Coding of CPR test specimens	.73
	3.5.3 Testing of CPR specimens	.74
	3.5.3.1 Mechanical tests	.74
	3.5.3.2 Physical tests	.75
	3.5.3.3 Thermal tests	.75
	3.5.3.4 Morphological tests	.75
Cha	pter 4 RESULTS AND DISCUSSION	.76
	4.1 Introduction	.76
	4.2 GTR tests	.76
	4.2.1 Density of GTR	.76
	4.2.2 FTIR surface characterization	.77
	4.3 Polymer tests	.78
	4.3.1 Mechanical tests	.79
	4.3.1.1 Impact test	.79
	4.3.1.2 Bending test	.79
	4.3.1.3 Compression test	.80
	4.3.1.4 Hardness test	.80
	4.3.2 Physical tests	.81
	4.3.3 Thermal tests	.81
	4.3.3.1 DSC	.81
	4.3.3.2 TMA	.82
	4.4 CPR tests	.82
	4.4.1 Mechanical tests	.82
	4.4.1.1 The effect of GTR wt.% on CPR	.82
	4.4.1.1.1 Impact test	.82
	4.4.1.1.2 Bending test	.85
	4.4.1.1.3 Compression test	.89
	4.4.1.1.4 Hardness test	.91
	4.4.1.2 The effect of GTR size on properties of CPR	.93
	4.4.2 Physical tests	.97

	.1 The effect of GTR wt.% and GTR size on water absorption of	97
4.4.3	Morphological tests	99
4.4.4	Thermal tests	.102
Chapter 5	CONCLUSIONS AND FUTURE RECOMMENDATIONS	.105
5.1	Conclusions	.105
5.2	Future recommendations	.106
List of ref	erences	111