

Effect of Different Curing Time on Degree of Conversion for Three Different Bulk-fill Composite Materials.

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University in partial fulfillment of the Requirements of the Master Degree in Operative Dentistry.

BY

Radwa Nagy Abdel Wahed Ahmed

B.D.S. 2008, Faculty of Dentistry

Ain Shams University

Supervisors

Dr. Omaima Hassan Ghallab

Associate professor, Operative Department Faculty of Dentistry, Ain Shams University

Dr. Asmaa Youssif Harhash

Associate professor, Conservative Department Vice Dean for education and students affair Faculty of Dentistry, Fayoum University.

To my beloved family,

Thank you for your endless love, support & sharing my hard times.

You sincerely light my path and bless every step.

First of all, I am deeply thankful to **ALLAH** to whom I relate any success I've achieved in my life.

My deepest thanks and grateful appreciation are to Dr. Omaima Hassan Ghallab, Associate professor, Operative Department, Faculty of Dentistry, Ain shams university, for her precious help, encouragement, sincere guidance and great effort throughout the course of this scientific research.

I would like to faithfully express my appreciation and gratitude for **Dr.** Asmaa Youssif Harhash, Associate professor, Conservative Department, Vice Dean for Education and Students affair, Faculty of Dentistry, Fayoum University, for her generous help, kind support, continuous encouragement and valuable advice all through the research time and throughout my academic and clinical work.

I would also like to sincerely thank Nermeen Nasr El Din, Dalia Riad and Mohamed Saad for their support with passion, encouragement and great help throughout all stages of my master degree and this research.

I would like to deeply thank all my valuable NUB friends for their unlimited support, valuable guidance and precious care.

Last but not least, I would like to thank all staff Members of Operative Dentistry Department, Ain Shams University, for their help and scientific advice.

List of Contents

	Page
LIST OF TABLES.	I
LIST OF FIGURES	III
ABBREVIATIONS	VIII
INTRODUCTION	1
REVIEW OF LITERATURE	4
AIM OF THE STUDY	32
MATERIALS AND METHODS	33
RESULTS	56
DISCUSSION	74
SUMMARY AND CONCLUSIONS	89
REFERENCES	91
ARABIC SUMMARY	_

List of Tables

		Page
Table (1):	Materials, brand name, composition, manufacturers and lot number	33
Table (2):	Variables of the study	39
Table (3):	Interaction between variables of the study	40
Table (4):	Three-way ANOVA results for the effect of different variables on degree of conversion (DC) %	55
Table (5):	Means and standard deviations (SD) for the effect of different bulk-fill flowable resin composite materials on DC (%) regardless of other variables.	56
Table (6):	Means and standard deviations for the effect of different bulk-fill flowable resin composite materials on DC (%) within each curing time and the assessed top and bottom surfaces	58
Table (7):	Means and standard deviations for the effect of different light curing time on DC (%) regardless of the other variables	59
Table (8):	Means and standard deviations for the effect of different light Curing time on DC (%) within each bulk-fill flowable resin composite material and the assessed top and bottom surfaces.	61

Table (9):	Means and standard deviations for effect of different	
	assessed top and bottom surfaces on mean DC (%) regardless	
	of the other variables.	62
Table (10):	Means and standard deviations for the effect of different assessed top and bottom Surfaces on mean DC (%) within	
	each bulk-fill flowable resin composite materials and	
	different light curing time.	64
Table (11):	Means and standard deviations for the interaction between	
	variables on mean DC (%) for top surfaces	65
Table (12):	Means and standard deviations for the interaction between	
	variables on mean DC (%) for bottom surfaces	66
Table (13):	Basic physical properties of di-methacrylate monomers	
	studied	80
Table (14):	The filler loading and particle size of tested bulk-fill	
. ,	materials	85

List of Figures

		Page
Fig. (1):	Syringe of Filtek flowable resin composite material	35
Fig. (2):	Compule of Xtra-Base bulk-fill flowable resin composite material loaded into the composite applicator gun	35
Fig. (3):	Compule of SDR bulk-fill flowable resin composite material loaded into the composite applicator gun	36
Fig. (4):	a) Assembled circular teflon mould ,b) Dissembled split teflon mold and aluminum ring	37
Fig. (5):	The Teflon mold rested on top of clear polyester strip and a glass slide.	41
Fig. (6):	Injection of the bulk-fill flowable resin composite in the Teflon mold.	42
Fig. (7):	a) The top of Teflon mold covered by the celluloid matrixb) 500 gm static load was applied on top of Teflon mold	43
Fig. (8):	The light curing unit (Woodpecker curing light LED.B)	44
Fig. (9):	Curing of the composite specimen	44
Fig. (10):	The marked top surface of the cured bulk-fill flowable resin composite specimen.	45

Fig. (11):	Scraping the surface to be assessed of the specimen	46
Fig. (12):	The ground bulk-fill flowable resin composite material powder with KBr powder.	47
Fig. (13):	Components of special evacuable KBr die	47
Fig. (14):	Manual hydraulic press	48
Fig. (15):	KBr pellet (mixture of bulk-fill resin composite and KBr powder)	48
Fig. (16):	a) KBr pellet placed in holder attachment,b) Top view of the optical compartment of a FTIR,c) KBr pellet holder attachment in the optical compartment of a FTIR.	49
Fig. (17):	The uncured paste of bulk-fill resin composite smeared on the KBr pellet.	50
Fig. (18):	Fourier transform infrared spectrometer apparatus	51
Fig. (19):	Passage of infra-red radiation through the attached sample	52
Fig. (20):	A representative infra-red spectra by FTIR showing the standard baseline technique	53

Fig. (21):	Bar chart showing the effect of different bulk-fill flowable	
	resin composite materials on DC (%) regardless of other variables.	5
Fig. (22):	Bar chart showing the effect of different bulk-fill flowable resin composite materials on DC (%) within each curing time and the assessed top and bottom surfaces	5
Fig. (23):	Bar chart showing the effect of different curing time on DC (%) regardless of the other variables	5
Fig. (24):	Bar chart showing the effect of different curing time on (%) within each bulk-fill flowable resin composite material and the assessed top and bottom surfaces	6
Fig. (25):	Bar chart showing for effect of different assessed top and bottom surfaces on mean DC (%) regardless of the other variables.	6
Fig. (26):	Bar chart showing the effect of different assessed top and bottom Surfaces on mean DC (%) within each bulk-fill flowable resin composite materials and different curing time	ϵ
Fig. (27):	Bar chart showing the interaction between variables on mean DC (%) for top surfaces	ϵ