

Faculty of Medicine
Department of Orthopedic Surgery

Results of Patch Augmentation for Massive or Irreparable Rotator Cuff Tears: A Systematic Review Essay

Submitted for partial fulfillment of Master Degree in Orthopedic Surgery

By
Abdelkareem Mahmoud Ahmed
MB BCH
UNDER SUPERVISION OF

Prof.Dr. Sherif Ahmed El Ghazaly

Professor of Orthopedic Surgery
Faculty of Medicine
Ain Shams University

Dr. Ahmed Hany Khater

Lecturer of Orthopedic Surgery
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2016

ī

Acknowledgement

First of all, I'd like to thank **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Sherif Ahmed El Ghazaly**, Professor of Orthopedic Surgery, Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

I am deeply thankful to **Dr. Ahmed Hany Khater**, Lecturer of Orthopedic Surgery, Ain
Shams University for his great help,
outstanding support, active participation and
guidance.

Abdelkareem Mahmoud Ahmed

List of Contents

	Title	Page No.
1) Li	st ofTables	IV
2) Li	st of Figures	V
3) Li	st of Abbreviations	VI
4) A	bstract	VIII
5) Aim of the Work		
6) Introduction		2
-	Pathogenesis of massive rotator cuff tears	5
7) Materials and Methods23		
8) Results		
9) Discussion		68
10)	Conclusion	72
11)	References	73
12)	Arabic Summary	••••

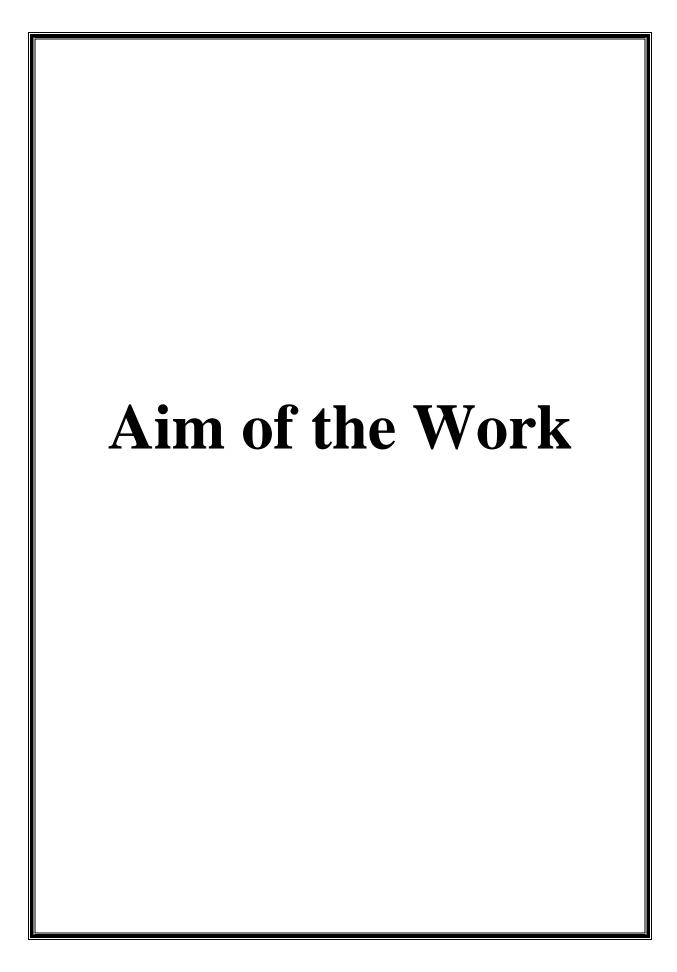
List of tables

Table N	o. Title	Page No.
Table (1):	Goutallier's classification of fatty is of the rotator cuff musculature	
Table (2):	Studies and patient demographic	data40
Table (3):	Type of surgical technique	44
Table (4):	Types of different grafts	46
Table (5):	Functional outcome scores preope and at final follow-up	•
Table (6):	Pre and postoperative ROM of different Studies	
Table (7):	Pre and postoperative results of eastudy	

List of Figures

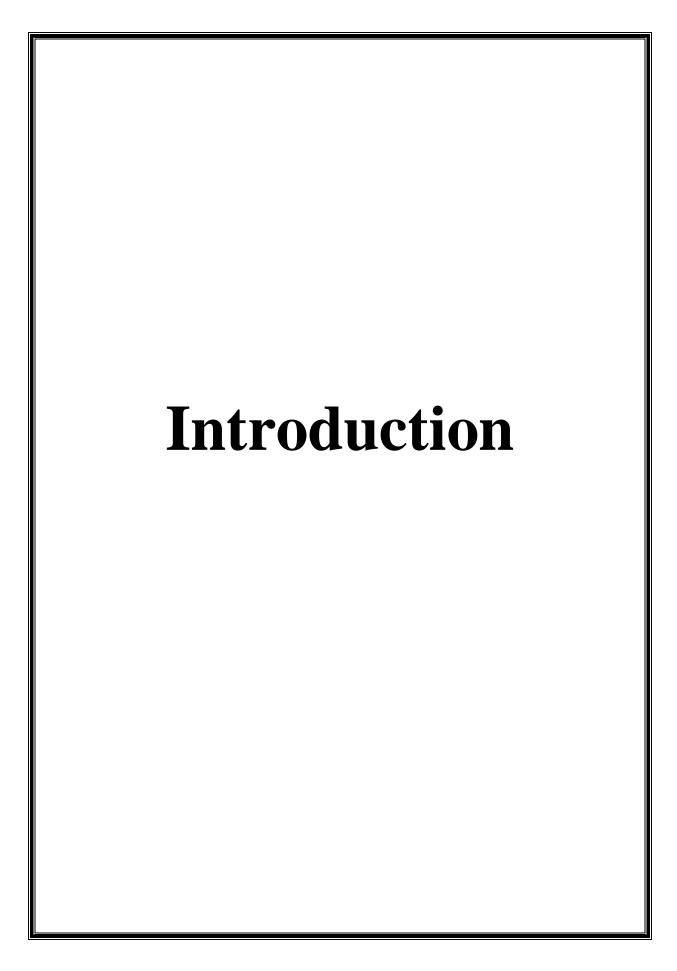
Fig. No.	Title	Page No.
Figure (1):	Geometric classification of cuff tears.	6
Figure (2):	Acromion morphology	8
Figure (3):	Subacromial impingement	9
Figure (4):	Subcoracoid impingement	10
Figure (5):	Critical shoulder angle	12
Figure (6):	Internal impingement	13
Figure (7):	Sagittal MRI view of Tangent sign	16
Figure (8):	Methodology of selection of studies	29
Figure (9):	ArthroFlex patch augmentation	33
Figure (10):	TUTOPATCH in an affected Shoulde	er35
Figure (11):	Repol Angimesh sutured over tendor	ıs37
Figure (12):	Arthroscopic repair with X-repair par	tch38
Figure (13):	Types of included patches	45
Figure (14):	Incidence of re-tears among each typ	e of graft.57
Figure (15,	16): Incidence of re-tears of patches	58

List of Abbreviations


Abbreviation	n Full term
ADM	A 111 1 1 4
	Acellular dermal matrix
	Acromiohumeral distance
	American Shoulder and Elbow Surgeon
	Coracohumeral ligament
	Critical shoulder angle
	Confidence interval
	Computed Tomography
ECM	Extra cellular matrix
HDL	High density lipoprotein
IL l	Interleukin
	nfraspinatus
JNK	c-Jun N-terminal protein kinase
	Low density Lipoprotein
	.Mental component summary
	.Physical component summary
	Matrix metalloproteinase-1
	Magnetic Resonance Imaging
	Poly-1-lactic acid
	Quick Disabilities of the Arm, Shoulder and Hand
RCT	Rotator cuff tear
RI	Rotator interval
	Range of motion

ROS	Reactive oxygen species
SANE	Single Assessment Numeric Evaluation
Sbs	Subscapularis
SF-12	Short Form
SIS	Small intestine submucosa
SLAP	Superior labrum anterior and posterior
SS	Supraspinatus
U/S	Ultra sound
UCLA	University of California at Los Angeles
VAS	Visual Analog Scale
Vs	Versus
WORC	Western Ontario Rotator Cuff

Abstract


The repair of massive rotator cuff tears is very challenging and technically demanding. This occurs because of the high incidence of re-tears following primary repair. There are several treatment options and patch augmentation is considered one of them. We report in this systematic review the results of massive cuff repair using different types of commercially available patches.

Keywords: rotator cuff augmentation- rotator cuff scaffolds- massive rotator cuff repair- massive rotator cuff grafts.

Aim of the work

The aim of the work is to perform a systematic review of the literature regarding patch augmentation as an option for management of massive rotator cuff tears. We will shed the light on the results of using the commercially available types of patches.

Introduction

Rotator cuff tears in general have always been a challenging and disabling problem among the elderly, athletes and active individuals (1).

It must be noted, however, that massive irreparable rotator cuff tears in particular represent nowadays even a greater challenge to most orthopaedic surgeons (2). They have been troublesome entities to treat, especially in younger patients because of the development of tendon retraction with inelasticity, muscle atrophy and fatty infiltration, all of which contribute to the higher failure rates of tendon repair (3, 4).

In general, none of the available treatment options proved to be complication-free. Many surgical techniques were proposed and aimed at decreasing pain and restoring overhead function as tendon transfers, glenohumeral joint fusion and reverse total shoulder arthroplasty (5, 6). Unfortunately the outcomes were found to be unsatisfactory in a considerable proportion of patients following these procedures. Besides, some of them were not ideal for younger patients (7).

Yet with a deeper understanding of the pathoanatomy of rotator cuff tears, which has dramatically improved over the years, newer treatment strategies have been proposed. One such strategy introduced during the last decade is the concept of mechanically augmenting a rotator cuff repair which has emerged as a fundamental tool in the treatment of large or complex tears (8). Research has led to the development of a number of natural and synthetic biomaterials known as that can be easily integrated into the host tissue to enhance the biological potential of tendons to heal (9). These in turn are derived from mammalian extracellular matrices (ECMs), synthetic polymers or a combination of both. On one hand, many ECMs have been used in the market as patches to augment and reinforce soft tissue during surgeries (10). These products repair include collagen-rich ECMs such as the commercially available intestinal submucosal scaffolds (CuffPatchTM, small dermal scaffolds (TissueMendTM, Restore®) and Zimmer®, GraftJacket®) (9). These tissue-engineered materials can be in the form of allografts or xenografts and they are the most commonly used sources for tendon augmentation as they overcome the limited availability and donor site complications that tend to occur with the use of autograft tissue (11).

It is postulated that these materials produce a certain degree of load sharing of forces across the site of tendon repair, consequently diminishing the possibility of tendon re-tear (10). It was also found that tendon augmentation using the well-defined three-dimensional structure of scaffolds can provide a chemically and

structurally constructive environment for host tissues and at the same time facilitate its quick interaction with the host tissue to induce new tissue formation (11).

On the other hand, synthetic scaffolds have a limited impact on the biology of healing; however, their capacity to maintain mechanical properties over time is used to mechanically stabilize the repaired tissue until actual host tissue healing has occurred (12).