ROLE OF B-LYMPHOCYTE STIMULATOR (BLyS) IN THE PATHOGENESIS OF SYSTEMIC LUPUS ERYTHEMATOSUS.

M.D. THESIS

Submitted for partial fulfillment of M.D.degree in Clinical Pathology.

Presented by

Ehab Mahfouz Reyad

M.B.B.Ch., M.Sc. (Clinical Pathology)

Supervised by

Prof. Dr. Irene Ramzy Iskander

Professor of Clinical Pathology

Cairo University

Prof. Dr. Sanaa Omar Asaad

Professor of Clinical Pathology

Cairo University

Prof. Dr. Nancy Mohamed El Gendy

Professor of Clinical Pathology

Cairo University

Faculty of Medicine Cairo University 2012

Acknowledgment

First and foremost, thanks to "God" for giving me the strength to carry out this work.

It may not be enough to contain the words of thanksgiving that I have for my main supervisor, Professor Dr., Irene Ramzy Iskander, Professor of Clinical Pathology, Cairo University, who offered her continuous advices and encouragement throughout the course of this thesis. Without her, this thesis would have not been accomplished.

I also wanted to thank Professor Dr., **Sanaa Omar Asaad**, Professor of Clinical Pathology, Cairo University, for the absolute support to the thesis.

I would like to express my very sincere gratitude to Professor Dr., Nancy Mohamed ElGendy, Professor of Clinical Pathology, Cairo University, for her great help and constructive guidance.

With my deepest gratitude to Dr., **Reem Jan**, Assistant Professor of Clinical Pathology, Cairo University, for her valuable advices.

With my deepest gratitude to my colleagues in the **Cairo Kidney Center (CKC)** for offering help whenever I need during this work.

I take this opportunity to express the profound gratitude from my deep heart to my lovely **wife** and to my sweet little **son** for their cooperative spirit and great assistance. Additionally, my deepest appreciation to my beloved **brothers** for their continuous moral support.

Finally, I dedicate this work to the spirit of my beloved **parents** who inspired, encouraged and fully supported me for every step that comes my way. Their loving memories have been part of my life and it will stay till the rest of my life.

Table of contents

Introduction and aim of the work1		
Review of literature		
Chapter (1): B lymphocyte stimulator	3	
Definition and synonyms	3	
Synthesis and release	4	
Structure		
BLyS receptors Stages of B cell development and expression		
of BLyS receptors	9	
Physiological functions of the BLyS system	12	
Chapter (2): BLyS and diseases	28	
Infections		
Allergy		
B cell malignancies	33	
Autoimmune diseases	34	
Chapter (3):The role of BLyS in SLE		
Introduction		
Implications for B cells and BLyS in SLE BLyS targeted therapy		
Patients and methods	55	
Results	72	
Discussion	89	
Summary and conclusion	102	
Recommendations	10	
References	106	
Arabic summary	130	

LIST OF ABBREVIATIONS

Abbreviation	The full term
Α	Adenine
Ab	Antibody
ACR	American College of Rheumatology
ANA	Anti-nuclear antibodies
Ag	Antigen
APS	Antigen presenting cells
APLS	Antiphospholipid syndrome
APRIL	A proliferation-inducing ligand
BCMA	B-cell maturation antigen
BCR	B cell receptor
BLyS	B lymphocyte stimulator
BM	Bone marrow
B-ME	B-mercaptoethanol
BR3	BAFF receptor 3
BtK	Bruton's tyrosine Kinase
С	Cytosine
C1q	Complement 1 q
C3	Complement factor 3
C4	Complement factor 4
CBC	Complete blood count
CD	Cluster of differentiation
c-DNA	Complementary DNA
CNS	Central nervous system
CREP	Cot producing cyclic adenosine monophosphate
	response element binding protein.
CRP	C-reactive protein
CSF	Cerebrospinal fluid
CSR	Class switch DNA recombination
CTLs	Cytotoxic T lymphocytes
DC	Dendritic cells
DLBCL	Diffuse large B-cell lymphoma
DNA	Deoxy-ribonucleic acid
ds-DNA	Double stranded DNA
EDTA	Ethylenediamine tetra- acetic acid
ELISA	Enzyme-linked immunosorbent assay
ESR	Erythrocyte sedimentation rate

FcyR Receptor for IgG Fc fragment Fol B Follicular B lymphocytes G Guanine g Gram GC Germinal center	
G Guanine g Gram	
g Gram	
9	
GSF Granulocyte colony stimulating factor	
Hb Hemoglobin	
HBSS Hank's balanced salt solution	
HCV Hepatitis C virus	
HIV Human immunodeficiency virus	
HPF High power field	
IFIG Interferon-inducible genes	
IFN Interferon	
lg Immunoglobulin	
IL Interleukin	
KD Kilo Dalton	
LDH Lactate dehydrogenase	
LPS Lipopolysaccharide	
MCP-1 Monocytes chemoattractant protein-1	
MHC Major histocompatibility complex	
mg Milligram	
MIF Macrophage migratory inhibitor factor	
min Minute	
ml Milliliter	
MM Multiple myeloma	
MQ Macrophage	
m-RNA Messenger RNA	
MZ Marginal zone	
n Number	
NF-kB Nuclear factor kappa B	
NIK Nuclear factor Kappa B inducing kinase	
PBMCs Peripheral blood mononuclear cells	
PCR Polymerase chain reaction	
PKC δ Protein kinase C δ	
r Correlation matrix and coefficient of correlation	on
RA Rheumatoid arthritis	
RBCs Red blood cells	
RF Rheumatoid factor	
RNA Ribonucleic acid	
RNP Ribonucleoprotein	

RT-PCR	Reverse transcription-PCR
SD	Standard deviation
sec	Second
SLE	Systemic lupus erythematosus
SLEDAI	Systemic lupus erythematosus disease activity
	index
Sm	Smith
SS	Sjogren's syndrome
T	Thymidine
T1	Transitional type 1 B cells
TACI	Transmembrane activator-1 and calcium
	modulator and cyclophilin ligand-interactor
TD	T cell dependent
Th	T helper
TG	Transgenic
TI	T cell independent
TLR	Toll-like receptor
Tm	Melting temperature
TNF	Tumor necrosis factor
TRAF	TNF receptor-associated factor
WBCs	White blood cells

LIST OF TABLES

Table Number	Table	Page number
1	Drugs in development for SLE that target BLyS.	53
2	The 1982 Revised criteria for diagnosis of systemic lupus erythematosus.	56
3	Systemic lupus erythematosus disease activity index (SLEDAI).	61
4	PCR amplification of the cDNA templates.	69
5	Descriptive statistics of the laboratory data of SLE patients.	78
6	Descriptive statistics of the results of RT-PCR analysis for the BLyS gene.	79
7	Comparison between sexes of SLE patients in relation to BLyS gene expression.	79
8	Comparison of the clinical manifestations among both groups of BLyS gene expression.	80
9	Comparison between the laboratory data of both non expressers and expressers of the BLyS gene.	82
10	Prevalence of serological data in non expressers and expressers of the BLyS gene.	82
11	Correlation between BLyS gene expression and demographic and laboratory data of SLE patients.	82

LIST OF FIGURES

Figure Number	Figure	Page number
1	Interaction and expression of ligands and receptors in the BAFF/APRIL system.	9
2	Stages of B cell development in the spleen.	11
3	Model of signaling pathways implicated in BAFF-R-mediated survival signals in primary B cells.	17
4	BLyS-mediated signaling pathways regulating B-cell growth and survival	18
5	Schematic of BCR signal amplication and BCR reinforcement of BR3 survival signaling.	20
6	Pathways underlying T cell-independent B cell responses to HIV-1 gp120.	30
7	The known and predicted impact of BLyS blocked in SLE.	54
8	Male to female ratio in SLE patients.	77
9	Ratio between patients on steroids and newly diagnosed SLE patients.	77
10	Clinical manifestations of SLE patients.	78
11	Percentage of BLyS gene expression in SLE patients.	79
12	Percentage of arthritis between cases with BLyS gene expression and those who are non expressers.	81
13	Percentage of nephritis between cases with BLyS gene expression and those who are non expressers.	81
14	Percentage of steroid treatment between cases with BLyS gene expression and those who are non expressers.	83
15	Percentage of newly diagnosed between cases with BLyS gene expression and those who are non expressers.	83
16	Comparsion between ESR in SLE patients in relation to BLyS gene expression.	84
17	Correlation between BLyS gene expression and ESR of studied cases.	84

18	Correlation between BLyS gene expression and duration of disease of studied cases.	85
19	Correlation between BLyS gene expression and age of studied cases.	85
20	Correlation between BLyS gene expression and creatinine of studied cases.	86
21	Correlation between BLyS gene expression and 24 hrs protein in urine of studied cases.	86
22	Correlation between BLyS gene expression and C3 levels of studied cases.	87
23	Correlation between BLyS gene expression and C4 levels of studied cases.	87
24	Correlation between BLyS gene expression and anti-ds DNA levels of studied cases.	88
25	Correlation between BLyS gene expression and SLEDAI scores of studied cases.	88
26	Photographs of the RT-PCR study for the SLE patients and control group.	

Abstract

Systemic lupus erythematosus (SLE) is a prototype of human systemic autoimmune diseases. The pathogenesis behind the disease remains unclear. It is a chronic disease characterized by multisystem organ affection; with recurrent remissions and exacerbations. Therefore, detecting changes in disease activity is of great importance.

B lymphocyte stimulator (BLyS) is a noval member of the tumor necrosis factor (TNF) ligand superfamily. It is a potent B cell survival factor, inducing B cell proliferation, differentiation, and immune modulation. Now, there are growing evidences that BLyS contributes to the pathogenesis of SLE.

Aim of the work:

The aim of this work is to study the expression of the BLyS mRNA using reverse transcription- polymerase chain reaction (RT-PCR) to examine the hypothesis that enhanced expression of BLyS gene is associated with increased disease activity.

Results:

Overexpression of BLyS gene was significantly correlated with the disease activity.

Keywords:

SLE – BLyS – Reverse – Transcription PCR.

Introduction & AIM OF THE WORK

INTRODUCTION

Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease characterized by multiple organ damage, high titers of autoantibodies, and various clinical manifestations often demonestrating a waxing- and-waning course. Womens, especially in their 20s and 30s, are affected more frequently than men (*Smith*, *and Gordon*; *2010*).

The etiology of SLE remains unknown and is clearly multifactorial. Many observations suggest a role for genetic, hormonal, immunologic, and environmental factor (*Kaufman et al., 2006*).

The immunologic events triggering the onset of clinical manifestations have not yet been fully defined, but mounting evidence has implied that B cells are key players in the pathogenesis. B cell defects that have been defined include abnormal expression or function of key signaling molecules, dysregulation of cytokines with key B cell effects, and perturbations in B cell developmental stages. Many of these defects may contribute to or be reflective of abnormalities in B cell tolerance (*Anolik*; 2007).

One of the most striking cytokine abnormalities in SLE is the presence of high levels of B-lymphocyte stimulator (BLyS) in serum. BLyS belongs to the tumor necrosis factor (TNF) superfamily and is a prominant factor in B cell differentiation, homeostasis, and selection. It is specifically expressed on cells of myeloid lineage. High levels of BLyS may relax B cell selection and contribute to autoantibody production, exacerbating the SLE disease state (*Thien et al., 2004*).

A clear relationship between BLyS overproduction and SLE has been described through several previous studies.

Because of the heterogeneity of SLE patients and the significant challenges to clinicians and investigators who aim to test promising new therapeutic agents, *Collins and his colleagues, (2006)* examined the hypothesis that increased disease severity and activity characterize SLE patients with overproduction of BLyS, and defined a subgroup of SLE patients who will be the appropriate candidates for BLyS antagonist therapy (*Collins et al., 2006*).

AIM OF THE WORK

The aim of this work is to study the role of BLyS in SLE pathogenesis by detecting its mRNA expression in peripheral blood mononuclear cells (PBMCs) from SLE patients using conventional reverse-transcription polymerase chain reaction (RT-PCR) and correlation BLyS mRNA expression with different laboratory and clinical features of SLE.

Chapter 1

B Lymphocyte Stimulator

In the july 9, 1999, Human Genome Sciences announces the discovery and characterization of a noval immune stimulant, called B Lymphocytes Stimulator (BLyS).

Definition:

BLyS/BAFF is a noval member of the tumor necrosis factor family (TNF) of ligands that is involved in B cell survival and maturation. It has become a target for therapeutic trials in autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (*Mackay and Schneider, 2009*)

Synonyms:

- 1- BLyS (B lymphocyte stimulator)
- 2- BAFF (B lymphocyte activating factor belonging to the TNF family).
- 3- TALL-1 (TNF- and ApoL-related leukocyte-expressed ligand1).
- 4- zTNF4.
- 5- THANK (TNF homologue that activates apoptosis, NF- kB, and c-Jun NH2- terminal kinase).
- 6- DTL (Dendritic cell derived TNF like molecule).
- 7- CD257.
- 8- TNFSF-13b (Tumor necrosis factor ligand superfamily, member 13b) (*Mackay et al., 2002*)