Recent Developments in Optical coherence Tomography for Imaging of the Retina and Optic Nerve Head

Essay

Submitted in Partial fulfilment of master degree

In Ophthalmology

$\mathcal{B}y$

Neveen Fathy Ahmed Shalaby M.B., B.Ch.

Under Supervision Of

Prof. Dr. Ahmed Darwish

Professor of Ophthalmology
Faculty of medicine -Ain Shams University

Ass. Prof. Dr. Mohamed Moghazy

Assistant professor of Ophthalmology Faculty of medicine -Ain Shams University

Faculty of medicine
Ain Shams University

الطرق الحديثة للرسم الطبقى البصرى المتماسك لشبكية العين و العصب البصرى

رسالة توطئة للحصول على درجة الماجستير في طب وجراحة العين

مقدمة من الطبيب/ نيفين فتحي احمد شلبي

تحت إشراف اد احمد درويسش أستاذ طب وجراحة العين كلية الطب – جامعة عين شمس

ام د محمد مغازی استاذ مساعد طب و جراحة العین كلیة الطب - جامعة عین شمس

كلية الطب جامعة عين شمس 2011

Recent Developments in Optical coherence Tomography for Imaging of the Retina and Optic Nerve Head

Essay Submitted in Partial fulfilment of master degree In Ophthalmology

By

Neveen Fathy Ahmed Shalaby M.B., B.Ch.

Under Supervision Of

Prof. Dr. Ahmed Darwish

Professor of Ophthalmology Faculty of medicine -Ain Shams University

Ass.Prof.Dr. Mohamed Moghazy

Assistant professor of Ophthalmology Faculty of medicine -Ain Shams University

Faculty of medicine -Ain Shams University **2011**

الطرق الحديثة للرسم الطبقى البصرى المتماسك لشبكية العين و العصب البصرى

رسالة

توطئة للحصول على درجة الماجستير في طب و جراحة العين

مقدمة من الطبيب\ نيفين فتحي احمد شلبي

تحت إشراف

اد احمد درویش أستاذ طب و جراحة العین کلیة الطب – جامعة عین شمس

ا.م. د محمد مغازى استاذ مساعد طب و جراحة العين كلية الطب _ جامعة عين شمس

كلية الطب جامعة عين شمس 2011

Summary

Optical coherence tomography (OCT) is a new, noninvasive, noncontact, transpupillary imaging technique that produces high resolution, cross sectional images of the retina.

It was developed in the early 1990s.

It is based on the principle of low-coherence interferometry and the information concerning various ocular structures is extracted from time delays of the reflected signals.

Different scanning protocols can be used according to the retinal pathology studied; and the image presented is either a cross sectional image or a topographic map.

It provides *quantitative data* about the thicknesses of the retinal layers; and *qualitative data* about morphology of the retina and optic nerve head and reflectivity defects. It also provides topographic parameters of the retina and optic nerve head.

OCT diagnoses many pathologies e.g retinal edema, serous retinal detachment, RPE detachment, macular holes, and macular pseudo-holes, drusen, choroidal neovascularization, diabetic retinopathy, cystoid macular edema, epiretinal membranes, optic disc pits and pathological optic disc and nerve fiber layer changes in glaucoma. It can diagnose early cases before any visual complaints appear. This helps out in better management of glaucoma and minimizing disability.

LIST OF CONTENTS

- List of abbreviations
- List of figures
- List of tables
- **▼** Introduction
- **✗** Aim of work
- Review of essay

Chapter (1): OCT history, principles & techniques

- o Optical coherence tomography.
- History of OCT.
- OCT physical & optical principle.
 - ✓ Introduction.
 - \checkmark Composition of an OCT system.
 - ✓ Properties of OCT
 - ✓ Limitations of TD-OCT.
 - ✓ SD-OCT.
 - ✓ Properties of SD-OCT.
 - ✓ Limitations of SD-OCT.
- OCT technique.

Chapter (2): OCT interpretation

- ⇒ Schematic chart for OCT interpretation
- ⇒ Normal retinal anatomy
- \Rightarrow OCT presentation of the retina
- ⇒ Qualitative analysis

- ✓ Morphological changes.
- ✓ Abnormal structure.
- ✓ Reflectivity.
- ⇒ Quantitative analysis
 - ✓ Thickness.
 - ✓ Surface retinal mapping
 - ✓ Retinal volume.

Synthesis and deduction

Chapter (3): clinical applications of OCT

- ⇒ Retinal diseases.
- ⇒ Macular diseases.
- ⇒ Glaucoma & diseases of the optic nerve.

Chapter (4): future of OCT

- \Rightarrow OCT market.
- \Rightarrow Recent functional applications of OCT.
- ⇒ Some new innovations of SD-OCT.
- \Rightarrow SS-OCT.
- **Summary**
- References
- X Arabic summary

List of abbreviations

3-D 3-Dimensional

ANSI American national standards institute **AMD** Age related Macular Degeneration

AO Adaptive Optics
BM Bruch's Membrane
BS Beam Splitter

CARS Coherent anti-stokes raman scattering

CC Choriocapillaries

CCD Charge-Coupled Device CME Cystoid Macular Edema

CMOS Complimentary Metal-Oxide Semiconductor

CNV Choroidal Neovascularization CRL Conventional Retinal Laser

DL Double-Layer

DME Diabetic Macular EdemaELM External Limiting membrane

ERM Epiretinal MembraneFA Fluorescein AngiographyFDA Food & drug association

FD-OCT Fourier Domain Optical Coherence Tomography

FTMH Full thickness macular hole

GA Geographical atrophy
GCC Ganglion Cell Complex
GCL Ganglion Cell Layer
HD High-Definition

HRT Heidelberg retinal tomogramIA Indocyanin Angiography

ICSC Idiopathic Central Serous Chorioretinopathy

IFT Improper Central Foveal Thickness

ILM Internal Limiting Membrane

INL Inner Nuclear LayerIPL Inner Plexiform LayerISL Inner Segment Layer

IS/OS D Inner Segment/Outer Segment photoreceptor

layer Defect

IS/OS PR Inner Segment/Outer Segment photoreceptor

LMH Lamellar Macular Hole MDB Median Distance Band

ME Macular EdemaMH Macular HoleMP Macular Pucker

MTM Myopic traction maculopathy

NFL Nerve Fiber Layer

OCT Optical Coherence Tomography

OCT/SLO OCT and Scanning Laser Ophthalmoscopy

ODT Optical Doppler tomograpgy
OLM Outer Limiting Membrane

ONH Optic Nerve Head

ONHD Optic Nerve Head Drusen

ONL Outer Nuclear LayerOPD Optical Path DifferenceOPL Outer Plexiform Layer

OS Outer Segment

OSL Outer Segment Layer

PCV Polypoidal Choroidal Vasculopathy

PD Pattern Deviation

PED Pigment Epithelial Detachment

PPC Photoreceptor Pigment epithelium Complex

PRL Photoreceptor layer
PS Posterior Segment

PS-OCT Polarization sensitive OCT

PVD Polypoidal Choroidal VasculopathyRAP Retinal Angiomatous Proliferation

RNFL Retinal Nerve Fiber Layer

RNFLT Retinal Nerve Fiber Layer Thickness

ROP Retinopathy of Prematurity

RP Retinitis Pigmentosa

RPE Retinal Pigment Epithelium

RPE/BM Retinal Pigment Epithelium/Bruch's membrane

RT Retinal Thickness

RTA Retinal thickness analyzer
SBS Shaken Baby Syndrome
SD-OCT Spectral Domain OCT
SH-OCT Second harmonic OCT
SLD Superluminescent Diode

SLO Scanning Laser Ophthalmoscopy

SNR Signal-to-Noise Ratio

SRF Subretinal Fluid

SRT Selective Retina Treatment

SS Swept Source TD Time Domain

Ti:Al2O3 Titanium Aluminum Oxide

UHR Ultrahigh Resolution

VF Visual Field

VM Verhoeff membrane

VMIA Vitreomacular interface abnormality

VMT Vitreamacular traction

VMTS Vitreomacular Traction Syndrome

<u>List of figures</u>

Figure 1:	early retinal imaging prototype instrument	5
Figure 2:	value of low coherence light	8
Figure 3:	an interferometer	9
Figure 4:	scheme of SD-OCT principle	15
Figure 5:	difference in image resolution between TD-OCT &	l
	SD-OCT	16
Figure 6:	improved image resolution using SD-OCT	17
Figure 7:	trutrack feature of the spectralis HRA+OCT	19
Figure 8:	multiple B-scans; at higher speeds	19
Figure 9:	Heidelberg noise reduction software	20
Figure 10:	3D image of epiretinal membrane; provides better	r
	visualization of the membrane	21
Figure 11:	en-face imaging using SD-OCT	22
Figure 12:	cross sectional images through optic nerve head 8	&
	3D image of foveal region	22
Figure 13:	segmentation with SD-OCT	23
Figure 14:	SD-OCT macular map of a normal eye25	
Figure 15:	OCT scanning protocol	27
Figure 16:	normal retinal cross section	32

Figure 17:	grey scale OCT scan of normal retina in the region	of
	foveal depression	32
Figure 18:	normal retina in OCT	35
Figure 19:	OCT tomogram of a healthy fovea	35
Figure 20:	normal retinal map	36
Figure 21:	posterior myopic staphyloma	37
Figure 22:	RPE detachment	37
Figure 23:	Macular edema	37
Figure 24:	macular pucker	38
Figure 25:	stages of lamellar macular hole	38
Figure 26:	cystoid macular edema	39
Figure 27:	neurosensory retinal detachment	39
Figure 28:	Pre-retinal membrane	40
Figure 29:	fundus photograph & OCT of ERM	41
Figure 30:	retinoschisis	42
Figure 31:	Foveal Retinoschisis	42
Figure 32:	hard exudates	43
Figure 33:	PED	44
Figure 34:	hard exudates	44
Figure 35:	intra-retinal haemorrhage	44
Figure 36:	fibrous scar	45

Figure 37: retinal edema combined with RPE detatchment	45
Figure 38: SD-OCT macular map of a normal eye	47
Figure 39: retinal map of atrophic macular degeneration	48
Figure 40: OCT topographic map of retinal thickness	50
Figure 41: retinal map using OCT	51
Figure 42: Quantitative optic disc examination	52
Figure 43: cystic maculapathy	56
Figure 44: ICSC	<i>57</i>
Figure 45: PED secondary to ICSC	58
Figure 46: DME	59
Figure 47: DME	59
Figure 48: diabetic retionapathy&hard exudates	60
Figure 49: vitreaomacular traction syndromes	61
Figure 50: 3D image of FTMH	63
Figure 51: stages ofmacular hole	64
Figure 52: stage 4of macular hole	65
Figure 53: LMH	65
Figure 54: drusen	66
Figure 55: RPE atrophy in ARMD	67
Figure 56: wet macular degeneration	68
Figure 57: Exudative age related macular degeneration	69

Figure 58: serous retinal epithelial detachment	<i>70</i>
Figure 59: PED	71
Figure 60: classic CNV	72
Figure 61: occult FVPED	72
Figure 62: PCV	73
Figure 63: RAP	74
Figure 64: RAP	74
Figure 65: discoid scar	<i>75</i>
Figure 66: Optic nerve head (ONH) and retinal nerve fiber lo	ayer
(RNFL) SD-OCT	76
Figure 67: Optic nerve head analysis in a normal patient	<i>78</i>
Figure 68: OCT images for glaucoma progression	<i>79</i>
Figure 69: RNFL thickness average analysis	<i>80</i>
Figure 70: High-resolution image of the AC angle	80
Figure 71: OCT tomogram of a normal fovea and OD	81
Figure 72: OCT of normal OD, drusen, and papilledema	<i>82</i>
Figure 73: optic disc edema	<i>83</i>
Figure 74: congenital optic disc pit	<i>83</i>
Figure 75: SD-OCT of a case of optic nerve head drusen	84
Figure 76: SD-OCT of a case of buried drusen	84
Figure 77: the eight OCT ophthalmic companies products	85