Surgical Reconstruction of Thumb-in-Palm Deformity in Spastic Cerebral Palsy Children

Thesis Submitted for partial fulfilment of M.D degree in Orthopaedic Surgery

By

Mostafa Fahmy El-Sayed Azouz

M.Sc.Orthpaedic Surgery

Under supervision of

Prof. Dr. Mohammed Mostafa El-Mahy

Professor of Orthopaedic Surgery Ain Shams University

Dr. Mohammed Nabil El-Sayed

Assistant Professor of Orthopaedic Surgery Ain Shams University

Dr. Ahmed Naeem Atiyya

Assistant Professor of Orthopaedic Surgery Ain Shams University

> Faculty of Medicine Ain Shams University 2016

List of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the work	5
Anatomy and biomechanics of the thumb.	6
Cerebral Palsy	24
Patients and Methods	70
Results	103
Case presentation	117
Discussion	149
Summary	163
Conclusion	167
References	168
Arabic Summary	

List of Abbreviations

ADDP..... Adductor pollicis

APB Abductor pollicis brevis

APL Abductor Pollicis Longus

BR..... **Brachioradialis**

CMCJ Carpometacarpal joint

CP..... Cerebral palsy

DI Dorsal interossii

DIP..... Distal Interphalangeal joint

DPA Dynamic position analysis

ECRB..... Extensor carpiradialis brevis

ECRL..... Extensor carpiradialis longus

Extensor Pollicis Brevis EPB.....

EPL..... Extensor pollicis longus

FCR..... Flexor Carpiradialis

FCU..... Flexor Carpiulnaris

FDP..... Flexor digitorum profundus

FDS..... Flexor digitorum superficialis

FPB..... Flexor pollicis brevis

FPL..... Flexor pollicis longus

IPJ..... Interphalangeal joint

MACS..... Manual ability classification system

MCPJ..... Metacarpophalangeal joint

OP..... Opponens Pollicis

PCSA..... Physiological cross-sectional area

PIP Proximal Interphalangeal joint

PT Pronator teres

RCL..... Radial collateral ligament

List of Abbreviations

SFA..... Spontaneous functional analysis

TCL..... Transverse carpal ligament

TMJ..... Trapeziometacarpal joint

UCL...... Ulnar collateral ligament

List of Tables

Table No. Title	Page No.
Table 1: Zancolli's classification of wrist treatment directions	•
Table 2: Static house classification of thum	b in palm deformity45
Table 3: House's classification of upper ext	remity functional use 45
Table 4: Static house classification	81
Table 5: Selection of surgical procedure	82
Table 6: Operation distribution of the study	group 83
Table 7: Associated operation distribution of	of the study group93
Table 8: Follow up distribution of the study	group103
Table 9: Comparison between pre and posto	operative as regard MACS 105
Table 10: Comparison between pre and pos	toperative as regard SFA 106
Table 11: Comparison between pre and pos	toperative as regard DPA 107
Table 12: Correlation study between preopatients group using pearson Correlation Co	
Table 13: Correlation study between posto patients group using pearson correlation coefficients.	•
Table 14: Correlation study between preoper patients group using pearson correlation coefficients.	
Table 15: Correlation study between postope patients group using pearson correlation coeffice	
Table 16: Effect of age on MACS	111
Table 17: Effect of age on SFA	111
Table 18: Effect of age on DPA	112
Table 19: Effect of age on static house class	sification112
Table 20: Effect of gender on MACS	113
Table 21: Effect of gender on SFA	113
Table 22: Effect of gender on DPA	114

List of Tables

Table	e Ma).			Title				P	age N	o.
Table :	23: E	ffect of	geno	ler on	static house	e clas	sifica	tion			114
Table :	24: E	ffect of	type	distri	bution of C	P on 1	MAC	S			115
Table :	25: E	ffect of	type	distri	bution of C	P on S	SFA.				115
Table :	26: E	ffect of	type	distri	bution of C	P on 1	DPA				116
				• •	distribution						116

Fig No.	Title Title	Page No.
Fig 1. The adductor aponeurosis dissection	has been removed in this	anatomic 9
Fig 2. Anatomic dissection of the joint demonstrating the insertion of (stabilizing retinaculum of the EPI	of the ADD into the dorsal	apparatus
Fig 3. Anatomic dissection of the	APB and its relationships.	15
Fig 4. Anatomic dissection of the	thenar musculature	15
Fig 5. Palmar view of the deep th distal reflection of the FPB and Al		
Fig 6. Average thumb-tip outpuposture in anatomical projections hand		to a right
Fig 7. Manual Ability Classification	on System (MACS)	48
Fig 8. Incision for release of adduction	ctor pollicis	54
Fig 9. Intramuscular slide of fexor	pollicis longus	54
Fig 10. Volar incision is as desceninence	cribed by Matev along t	he thenar55
Fig 11. Using the volar the neurovascular bundle of the long was reflected in an ulnar direction	g finger directly over the	lumbrical
Fig 12. Intraoperative traction to a the thumb in the optimal position.		
Fig 13. The EPL tendon was trandistal end of the EPL was tenode delivered by a tendon passer into t	esed, whereas the proxima	l end was
Fig 14. The tendon passer was a first dorsal compartment and del joint incision, rerouting the tendor allow thumb abduction	iver it into the dorsal thun from an Adductor mome	mb MCP ent arm to
Fig 15. Sesamoid-metacarpal sync		
Fig 16. Green transfer		
Fig 17. Pronator teres re-routing-S		
115 17.11 TOTALOT LETES 10-TOURTING-13	angicai wennique	00

Fig No. Title	Page No.
Fig 18. Age (years) distribution of the study group	70
Fig 19. Sex distribution of the study group.	71
Fig 20. CP types of the study group.	71
Fig 21. Distribution of deformity among study group	72
Fig 22. Causes of brain lesion	73
Fig 23. Types of thumb in palm deformity among study groups	oup74
Fig 24. Operation distribution of the study group	84
Fig 25. Z-plasty approach of the first web	85
Fig 26. The first web space after Z-plasty	85
Fig 27. First dorsal interosseous release.	86
Fig 28. Adductor pollicis release.	86
Fig 29. After first dorsal interosseous& Adductor pollicis r	release 87
Fig 30. Flexor pollicis longus release.	87
Fig 31. Traction of Extensor pollicis brevis.	88
Fig 32. Traction of Extensor pollicis longus.	89
Fig 33. Extensor pollicis longus rerouted to Extensor brevis	_
Fig 34. After Extensor pollicis longus rerouting to the extensor compartment	he first90
Fig 35. A metacarpophalangeal joint approach	90
Fig 36. Retrograde K-wire through metacarpophalangeal the thumb.	
Fig 37. A metacarpophalangeal joint fixed by K-wire	
Fig 38. A metacarpophalangeal joint capsulodesis of the th	umb92
Fig 39. Position of the thumb after metacarpophalange fixation by K-wire and capsulodesis.	
Fig 40. Associated operations done simultaneously	
Fig 41. Follow up distribution of the study group	

Fig No. Title	Page No.
Fig 64. Z plasty of 1st Web space	129
Fig 65. FCU.	129
Fig 66. ECRB	130
Fig 67. FCU to ECRB.	130
Fig 68. Position of hand after FCU to ECRB	131
Fig 69. Position of hand and thumb.	132
Fig 70. Hand grasp.	132
Fig 71. Thumb pinch	133
Fig 72. PXR of Rt hand showing postoperative follow	up133
Fig 73. Lt Thumb-in-Palm static house classifica associated with wrist flexion deformity	* =
Fig 74. Lt Thumb-in-Palm static house classification	type II134
Fig 75. Position of hand and thumb.	136
Fig 76. Thumb pinch	136
Fig 77. Hand grasp.	137
Fig 78. PXR of Lt hand showing postoperative follow	up137
Fig 79. Lt Thumb-in-Palm static house classification to	type I138
Fig 80. Lt Thumb-in-Palm static house classificated associated with wrist flexion deformity	• •
Fig 81. PXR Lt hand preoperative.	139
Fig 82. Position of hand and thumb (A-P view)	140
Fig 83. Position of hand and thumb (Lateral view)	141
Fig 84. Thumb pinch	141
Fig 85. Hand grasp	142
Fig 86. PXR of Lt hand showing postoperative follow	
Fig 87. Rt Thumb-in-Palm static house classification	_

Fig 0	lo. Title	Page No.
•	Rt Thumb-in-Palm static house classification	• -
	ted with wrist flexion and ulnar deviation deformit	
Fig 89.	PXR Rt hand preoperative (A-P view)	144
Fig 90.	PXR Rt hand preoperative (Lateral view)	144
Fig 91.	FDS and FDP release.	145
Fig 92.	FPL release.	146
Fig 93.	Z plasty 1st Web space	146
Fig 94.	Position of hand and thumb (A-P view)	147
Fig 95.	Position of hand and thumb (Lateral view)	148
Fig 96.	Hand grasp	148
Fig 97.	PXR of Rt hand showing postoperative follow up.	148

Introduction

Cerebral palsy is the musculoskeletal manifestation of a non progressive central nervous system lesion that usually occurs due to a perinatal insult to the brain. Though the cerebral insult is static the musculoskeletal pathology is progressive. Spasticity leads to shortening of musculoskeletal units, which in turn causes fixed contractures and eventually leads to torsional abnormalities of long bones, joint instability, deformities, and degenerative arthritis.[1]

The clinical manifestations may vary widely, ranging from an intelligent child with mild spasticity of the hand to a completely wheelchair bound child who is communicate with his environment.[2]

The anatomy of the thumb includes the skeletal articulations of the trapezial thumb metacarpal, metacarpophalangeal (MCP), and interphalangeal (IP) joints. Multilevel deformity at each of these joints can occur dynamically because of an imbalance of muscular forces across the thumb. Nine muscles are responsible for function of the thumb through skeletal stabilization and movement across the carpometacarpal (CMC), MCP, and IP joints, including the thenars (abductor pollicis brevis, opponens pollicis, and flexor pollicis brevis), the adductor pollicis, the flexor pollicis longus (FPL), the extensor pollicis longus (EPL), the abductor pollicis longus, the extensor pollicis brevis, and the

first dorsal interosseous. In cerebral palsy, deformity occurs most commonly because of spasticity and contracture of the flexion-adduction muscles, coupled with poor voluntary control and weakness of the extensor-abduction muscles.[3]

The complexity of the spastic hand is due to the fact that the spastic muscles cannot be used as tendon transfers with the same efficiency as done in reconstructive surgery of the hand with flaccid paralysis.[4]

The deformity is basically a dynamic deformity and hence the surgeon must have a definite plan before embarking on the procedure. After anesthesia, the deformities disappear and the hand may appear normal. [4]

The surgical procedures as such are not very technically demanding but the assessment, decision-making, and selecting a procedure for the given patient make this field challenging. When done well, the results are rewarding not only in terms of improvement in hand function but also in appearance and personal hygiene, which leads to better self-image and permits better acceptance in the society. [4]

The goals of surgical intervention are set depending on the preoperative functional status. When the child has a good voluntary motor control the goals are to improve function and appearance. In cases of severe involvement, surgery is a reasonable option if it facilitates the nursing care by the parents or the care giver.

Upper extremity deformities in cerebral palsy are caused by the imbalance between spastic and weak muscles acting on unstable joints. The basic goals of surgical treatment of spastic hands and upper extremities of patients with cerebral palsy can be summarized as reducing the strength of spastic muscles, antagonist the muscles, strengthening and permanent stabilization of unstable joints. Surgical techniques to achieve these goals include lengthening of spastic muscles, tendon transfers, release or plication of the joint capsule, joint arthrodesis, and skin procedures.[5]

The quality of voluntary muscle control and sensibility is the most important factors in predicting the success of operation. In the past, thumb deformities were classified on the basis of the static position of the thumb, but rational treatment decisions can be made only by a careful assessment of the patient's hand and thumb function.[6]

Thumb involvement is common in cerebral palsy and its management is complex. The thumb held flexed inside the palm impairs grip and grasp and lack of abduction and extension limits the size of the object the patient can grasp. The presence of thumb in the palm also obstructs the function of other fingers. It may even contribute to rejection of the hand and cause problems in hygiene.[7]

There are four key points to examine when considering a child with thumb deformity in cerebral palsy for surgical intervention.[8]

- Spasticity of adductor and flexor muscles adductor pollicis (AP), flexor pollicis brevis (FPB), first dorsal interosseous (FDI), flexor pollicis longus (FPL)
- Weakness of the extensors and abductors.
- Hypermobility of the metacarpophalangeal (MCP) joint.
- Web space skin contracture.