

Assesment of *Aloe vera*, *Azadirachta indica* and *Moringa oleifera* aqueous extracts on induced hepatotoxicity in rat

Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science Submitted by

Rehab Abdelkader Ali Ahmed Salama

(Ain Shams University, B. Sc, 2010)

Supervised by

Prof. Dr. Magdy Mahmoud Mohamed Dr.

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Mahmoud Badr Abdelwahab

Biochemistry Fellow Poison Control Centre Ain Shams University Hospital

تأثير مستخلصات الصبار و النيم و المورينغا على تحسين التسمم الكبدي المستحث في الجرذان

رسالة مقدمة للحصول على درجة الماجستير في العلوم كجزء مكمل لمتطلبات رسالة العلوم المجستير بكلية العلوم

مقدمة من

رحاب عبد القادر على أحمد سلامة

(بكالوريوس العلوم في الكيمياء الحيوية- ٢٠١٠)

تحت إشراف

د محمود بدر عبد الوهاب

زميل الكيمياء الحيوية مركز علاج التسمم مستشفيات جامعة عين شمس أ.د.مجدي محمود محمد

أستاذ الكيمياء الحيوية قسم الكيمياء الحيوية كلية العلوم جامعة عين شمس

ACKNOWLEDGEMENT

I am grateful to The Almaighty God for establishing me to complete this work.

I am indebted to my professor Dr. Magdy Mahmoud, Professor of Biochemistry, Faculty of Science, Ain Shams University for his valuable supervision and support through all stages of this work.

I wish to express my deep appreciation and gratitude to Dr. Mahmoud Badr, Biochemistry Fellow, Ain Shams University Hospitals for his guidance and valuable efforts through this study.

I would like to express my sincere thanks to Professor Ahmed Osman the principle of the Biochemistry Department, Faculty of Science, Ain Shams University for providing me with all necessary facilities.

I consider it an honor to work with Dr. Marwa Shakweer, Lecturer of Pathology, Faculty of Medicine, Ain Shams University.

I place on record, my sincere gratitude to Dr. Sabry Shaarawy Principle of the animal house at the National Cancer Institute for his great help to complete this work.

I owe my deepest gratitude to my husband Mahmoud Elgenedy; he continually and convincingly conveyed a spirit of adventure in regard to research and encourages me to proceed my study. Without his guidance and persistent help this dissertation would not have been possible.

I would like to express my deepest gratitude for my parents and my sisters for their prayers and valuable support through the whole stages of this work.

Finally I introduce this work to my children.

ABSTRACT

Eighty albino rats have been divided into ten groups. First group was fed on a basal diet while the second group was administered paraffin (10 ml/kg body weight) through gavage for four days. The third to the tenth groups received (5 ml/kg b. wt.) CCl₄: liquid paraffin (2:1) for three days followed by (10 ml/kg body weight) CCl₄: liquid paraffin (2:1) for one day through gavage. Group three kept without any treatment, other groups then received (AV) (60 mg/kg body weight), (MO) (200 mg/kg body weight), (N) (200 mg /kg body weight), bi-extract of (AV+N), bi-extracts of (AV+MO), bi-extract of (MO+N), and tri-extracts of (AV+N+MO) respectively for 36 days. The liver and blood were studied for hepatotoxicity and antioxidant indices.

Biochemical and histopathological analysis revealed that CCl₄ elevated plasma liver enzymes (aspartate transaminase, alanine aminotransferase, and gamma glutamyl transferase). Carbon tetrachloride also caused an elevation in erythrocyte content of glutathione with a concomitant increase in the plasma malondialdeyhde content, along with marked atrophy of hepatocytes. However, these effects were ameliorated by the treatment of rats with the different extracts.

Results showed that administration of the aquatic extracts of *Aloe vera*, Neem and Moringa (separately/mixedly) played a therapeutic role against CCl₄-induced liver damage by improving liver enzyme activities, blood antioxidant parameters, and liver histopathological picture of intoxicated rats.

CONTENTS

Subject	Page
Acknowledgment	I
Abstract	Ш
List of Abbreviations	1
List of Tables	4
List of Figures	5
Introduction and Aim of Work	7
Chapter (1) Review of Literatures	
1.1 Carbon tetrachloride CCl ₄	10
1.1.1.Effect of carbon tetrachloride on Liver enzymes	12
1.1.2 .Effect of carbon tetrachloride on plasma proteins	14
1.1.3 .Effect of carbon tetrachloride on oxidant and antioxidant parameters	15
1.1.4 .Effect of carbon tetrachloride on histopathology	16
1.2 The phenolic compounds	17
1.2.1 .Moringa	17
1.2.2 .Neem	22
1.2.3 .Aloe vera	26
Chapter (2) Material and Methods	
2.1 Material	29
2.1.1 .Aloe vera aqueous extract	29
2.1.2.Moringa oleifera extract	29
2.1.3 .Azadirachta indica extract	30
2.1.4 .Animals and treatment	30
2.1.5.Biochemical investigations	33
2.1.6.Peripheral blood processing	33

Subject	Page	
2.1.7.Erythrocyte processing		
2.2 Methods	39	
2.2.1.Biochemical tests	39	
2.2.2.Histopathological Examination	53	
2.2.3.Data analysis	53	
Chapter (3) Results		
3.1Biochemical evaluation	55	
3.1.1.Evaluation of liver Enzymes activity	55	
3.1.2.Evaluation of plasma proteins		
3.1.3.Evaluation of oxidant and antioxidant parameters	56	
3.2Histopathological evaluation		
Chapter (4) Discussion		
Discussion	77	
Chapter (5) Summary		
Summary	84	
Chapter (6) References		
References	86	
Appendix		
Arabic Abstract	111	
Arabic Summary	112	

LIST of ABBREVIATIONS

AGE	Analogy to advanced glycation end-products
ALE	Advanced lipoxidation end-products
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
AV	Mono aqueous extract of Aloe vera
b. wt.	Body weight
CAT	Catalase
CDDP	Cisplatin, cis-diamminedichloroplatinum
CH ₂ (CHO) ₂	1,3-Propanedial
DPPH	2,2-diphenyl-1-picrylhydrazyl
DNPH	2,4- Dinitrophenylhydrazine
DTNB	5,5° dithiobis (2-nitrobenzoic acid)
EPR	Electron paramagnetic resonance

FRAP	Ferric reducing ability of plasma
GPx	Glutathione peroxidase
GSH	Reduced glutayhione
НЕ	Hematoxylin and eosin
IL	Interleukin
I.p.	intra-peritoneally
MDA	Malondialehyde
MNLE	Methanolic neem leaves extract
МО	Mono aqueous extract of Moringa
N	Mono aqueous extract of Neem
NO	Nitric oxide
Ppb	Parts-per-Billion
PUFA	Poly unsaturated fatty acid
ROS	Reactive Oxygen species
SOD	Superoxide dismutase

TBA	Thiobarbituric acid
TGFs	Transforming growth factors
TNF-α	Tumor necrosis factor-alpha

LIST of TABLES

Table		Page
Table 1	Effect of aqueous extracts on liver enzymes after 18	58
	days of treatment	
Table 2	Effect of aqueous extracts on liver enzymes after 36	59
	days of treatment	
Table 3	Effect of aqueous extracts on plasma proteins after 18	60
1 4010 3	days of treatment	00
Table 4	Effect of aqueous extracts on plasma protein after 36	61
14010	days of treatment	01
	Effect of aqueous extracts on plasma MDA content	
Table 5	and erythrocyte GSH content after 18 days of	62
	treatment	
	Effect of aqueous extracts on plasma MDA content	
Table 6	and erythrocyte GSH content after 36 days of	63
	treatment	
	Histopathological evaluation of liver after 18 and 36	
Table 7	days of treatment	76

LIST of FIGURES

Figure		Page
Fig. 1	Aspartate aminotransferase standard curve	41
Fig. 2	Alanine aminotransferase standard curve	44
Fig. 3	Comparison between the aqueous extracts effect on aspartate aminotransferase (AST) after 18 and 36 days	64
Fig. 4	Comparison between the aqueous extracts effect on alanine aminotransferase (ALT) after 18 and 36 days	65
Fig. 5	Comparison between the aqueous extracts effect on gamma glutamyl transferase (GGT) after 18 and 36 days	66
Fig. 6	Comparison between the aqueous extracts effect on plasma malondialdeyhde (MDA) after 18 and 36 days of treatment	67
Fig. 7	Comparison between the aqueous extracts effect on erythrocyte glutathione (GSH) after 18 and 36 days of treatment	68
Fig.8	Hepatic histology of rats (light microscope, × 400) A: normal control, B: paraffin control, and C: CCl ₄ control	71
Fig. 9	Hepatic histology of rats (light microscope, × 400) A: treated with <i>Aloe vera</i> for 18 days and B: treated with <i>Aloe vera</i> for 36 days	72
Fig. 10	Hepatic histology of rats (light microscope, × 400) A: treated with Moringa for 18 days and B: treated with Moringa for 36 days	72
Fig. 11	Hepatic histology of rats (light microscope, × 400) A: treated with Neem for 18 days and B: treated with Neem for 36 days	73

Fig. 12	Hepatic histology of rats (light microscope, \times 400) A: treated with <i>Aloe vera</i> and Neem for 18 days and B: treated with <i>Aloe vera</i> and Neem for 36 days	73
Fig. 13	Hepatic histology of rats (light microscope, × 400) A: treated with <i>Aloe vera</i> and Moringa for 18 days and B: treated with <i>Aloe vera</i> and Moringa for 36 days	74
Fig. 14	Hepatic histology of rats (light microscope, × 400) A: treated with Moringa and Neem for 18 days and B: treated with Moringa and Neem for 36 days	74
Fig. 15	Hepatic histology of rats (light microscope, × 400) A: treated with <i>Aloe vera</i> , Neem and Moringa for 18 days and B: treated with <i>Aloe vera</i> , Neem and Moringa for 36 days	75

INTRODUCTION AND AIM OF THE WORK

toxic chemicals. environmental Exposure to pollutants and drugs can cause cellular injuries through metabolic activation of reactive oxygen species (ROS) (Szymonik-Lesiuk, et al. 2003). Carbon tetrachloride is used to induce hepatotoxicity in animal models through lipid peroxidation. Flavonoids are a large group of polyphenolic compounds that play an important role in detoxification of free radicals and are markedly found in fruits, vegetables, and medicinal plants (Potter 1997). Moringa oleifera, Azadirachta indica, and Aloe vera are phenolic rich plants which have remarkable medical importances. This study has investigated the effect of Moringa oleifera, Azadirachta indica, and Aloe vera mono, bi-, and tri aqueous extracts on rats received (5 ml/kg b. wt.) for three days followed by (10 ml/ kg b. wt.) CCl₄: liquid paraffin (2:1). Protective effect of *Moringa oleifera*, Azadirachta indica, and Aloe vera on plasma liver enzymes, proteins, antioxidant and liver pathology in CCl₄induced hepatotoxicity in rats.

This study aims to identify the correlation between Moringa oleifera, Azadirachta indica, and Aloe vera