

COMPUTER-AIDED BREAST CANCER DETECTION AND DIAGNOSIS FROM DIGITAL MAMMOGRAMS

By

Mugahed Ali Shawqi Al-antari

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Biomedical Engineering and Systems

COMPUTER-AIDED BREAST CANCER DETECTION AND DIAGNOSIS FROM DIGITAL MAMMOGRAMS

By

Mugahed Ali Shawqi Al-antari

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Biomedical Engineering and Systems

Under the Supervision of Prof. Dr. Yasser M. Kadah

.....

Professor of Biomedical Engineering Biomedical Engineering and Systems Faculty of Engineering, Cairo University

COMPUTER-AIDED BREAST CANCER DETECTION AND DIAGNOSIS FROM DIGITAL MAMMOGRAMS

By

Mugahed Ali Shawqi Al-antari

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Biomedical Engineering and Systems

Approved by the Examining Committee:

Prof. Dr. Yasser M. Kadah Professor of Biomedical Engineering, Faculty of Engineering, Cairo University	Thesis Main Advisor
Prof. Dr. Ahmed M. Badawi Professor of Biomedical Engineering, Faculty of Engineering, Cairo University	Internal Examiner
Prof. Dr. Mohamed I. El-Adawy Professor of Electronic Engineering, Faculty of Engineering, Helwan University	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Mugahed Ali Shawqi Al-antari

Date of Birth: 03 / 02 / 1985

Nationality: Yemeni

E-mail: en.mualshz@gmail.com

Phone: +201152622433/+967734502097 **Address:** 30 Hassan Rakha St., Faisal, Giza

Registration Date: 01 / 10 / 2012 **Awarding Date:** ... /... / **Degree:** Master of Science

Department: Biomedical Engineering and Systems

Supervisors: Prof. Dr. Yasser M. Kadah

Examiners:

Prof. Dr. Yasser M. Kadah (Thesis Main Advisor)

Professor of Biomedical Engineering and Systems, Faculty of Engineering, Cairo University.

Prof. Dr. Ahmed M. Badawi (Internal Examiner)

Professor of Biomedical Engineering and Systems, Faculty of Engineering, Cairo University.

Prof. Dr. Mohamed I. El-Adawy (External examiner)

Professor of Electronic Engineering, Faculty of Engineering, Helwan University.

Title of Thesis:

Computer-Aided Breast Cancer Detection and Diagnosis from Digital mammograms

Keywords:

Computer-Aided Detection; Computer-Aided Diagnosis; Cohen-k factor; Peripheral Equalization; Receiver Operator Characteristic Curve.

Summary:

Computer-aided detection (CADe) and diagnosis (CADx) systems are emerging technologies using to help radiologists to interpret medical images. In this study, first we applied an image processing technique for peripheral region enhancement. Then a CADe and CADx systems are developed and applied to the standard MIAS and DDSM databases for classification of masses. Results have shown that SFS was the best for both CAD systems and almost all of samples were correctly classified with MIAS database, while the DDSM database results shown 98.67% agreement.

ACKNOWLEDGMENT

Thanks to God first and foremost for his blessings on my all life and guided me for seeking knowledge and completing this thesis. Then I would like to express my sincere appreciation to my thesis advisor, Prof. Dr. Yasser M. Kadah for his invaluable time that he spends it in supervision, motivation and guidance and his insightful comments that improved the quality of this thesis.

DEDICATION

I would like to sincerely thank all of my family members and especially my parents for their ceaseless love and support and for instilling a love of learning in myself. I would like to thank my wife and my daughter for enduring a seemingly endless ordeal, for sacrificing some of their best years to completely finish this research. The thesis procedures could not complete successfully without having their patience, support, love, and encouragement.

TABLE OF CONTENTS

ACKNOWLEDGMENT	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	
LIST OF ABBREVIATIONS	
ABSTRACT	
CHAPTER 1: INTRODUCTION	1
1.1 OVERVIEW OF THESIS	
1.2 THESIS OBJECTIVES	
1.3 OUTLINE OF THESIS	3
CHAPTER 2 : BACKGROUND AND LITERATURE REVIEW	5
2.1 MAMMOGRAPHY DEFINITION	5
2.1.1 Screening and Diagnostic mammography	
2.2 MAMMOGRAM VIEWS FOR DIAGNOSTIC SCREENING	
2.2.1 Standard Views	
2.2.2 Additional (Supplementary) Views	
2.3 COMPUTER-AIDED DIAGNOSIS OF BREAST CANCER	
2.3.1 Computer-Aided Detection and Computer-Aided Diagnosis	
2.4 DATABASE	
2.4.1MIAS Database	
2.4.2DDSM Database	12
CHAPTER 3: PERIPHERAL REGION EQUALIZATION OF	
BREAST TISSUE	
3.1 INTRODUCTION	
3.2 LITERATURE REVIEW	
3.3.1 Methodology Description with MIAS Database	
3.3.2 Methodology Description with DDSM Database	
3.4 RESULTS AND DISCUSSION	
CHAPTER 4: THE PROPOSED COMPUTER-AIDED DETECTION OF SYSTEM	
4.1 INTRODUCTION	
4.2 LITERATURE REVIEW	
4.3 METHODOLOGY	
4.3.1 Preprocessing	
4.3.2 ROI Extraction	
4.3.3 Feature Extraction	30
4.3.3.1 First Order Statistics Features	30

4.3.3.2 Higher Order Statistics Features	31
4.3.3.3 Wavelet Transform Features	. 33
4.3.4 Feature Normalization	. 35
4.3.5 Feature Selection	. 35
4.3.5.1 Statistical Selection Methods	35
4.3.5.1.1 T-test	. 35
4.3.5.1.2 Kolmogorov-Smirnov Test	36
4.3.5.1.3 Wilcoxon Signed Rank Test	36
4.3.5.2 Other Selection Methods	. 36
4.3.5.2.1 Sequential Forward Selection Method	. 36
4.3.5.2.2 Sequential Backward Selection Method	. 37
4.3.5.2.3 Sequential Floating Forward Selection Method	. 37
4.3.5.2.4 Branch and Bound Selection Method	. 37
4.3.6 Classification	. 38
4.3.6.1 K-Voting Nearest Neighbor Classifier	. 38
4.3.6.2 Support Vector Machine Classifier	. 38
4.3.6.3 Linear Discriminant Analysis Classifier	38
4.3.6.4 Quadratic Discriminant Analysis Classifier	. 38
4.3.7 Evaluation of CADe System	. 39
4.4 RESULTS AND DISCUSSION	· 41
CHAPTER 5: THE PROPOSED COMPUTER-AIDED DIAGNOSIS	
SYSTEM	55
5.1 INTRODUCTION	
5.2 LITERATURE REVIEW	
5.3 METHODOLOGY	
5.3.1 Preprocessing	
5.3.2 ROI Extraction	
5.3.3 Feature Extraction	
5.3.4 Feature Normalization	
5.3.5 Feature Selection	
5.3.6 Classification	
5.3.7 Evaluation of CADx System	
5.4 RESULTS AND DISCUSSION	
CHAPTER 6 : CONCLUSIONS AND FUTURE WORK	
6.1 CONCLUSIONS	
CA FLITTING WORK	
6.2 FUTURE WORK	. 71
Appendix A MIAS database that was used in CADe system development	
	73
Appendix A MIAS database that was used in CADe system development Appendix B DDSM database that was used in CADx system development	73 77
Appendix A MIAS database that was used in CADe system development	73 77 l

LIST OF TABLES

Table 3.1 Impact of the r value on the behavior of peripheral region enhancen technique	
Table 4.1 First-order statistics features from the histogram	30
Table 4.2 Second-order statistics features	32
Table 4.3 Indices measuring diagnostic performance	39
Table 4.4 Classification of the agreement based on K value	41
Table 4.5 Indices for CAD system Performance with all classifiers by using test	
Table 4.6 Indices for CAD system Performance with all classifiers by using test	KS-
Table 4.7 Indices for CAD system Performance with all classifiers by using test	W-
Table 4.8 Indices for CAD system Performance with all classifiers by using S	SBS
method	SFS
method	FFS
method	
method	
method	51
Table 4.13 The features selected by feature selection stage using SBS, SFFS BBS methods at both values of quantization level (L)	
Table 4.14 The features selected by feature selection stage using SFS at $L=8$.	53
Table 4.15 The features selected by feature selection stage using SFS at $L=32$	53
Table 4.16 Comparison between our best result and other results in the literature	e 54
Table 5.1 Indices for CADx Performance with all classifiers by using SBS	62
Table 5.2 Indices for CADx Performance with all classifiers by using SFS	62
Table 5.3 Indices for CADx Performance with all classifiers by using SFFS	63
Table 5.4 Indices for CADx Performance with all classifiers by using BBS	63
Table 5.5 The performance of CADx system with NN classifier at each select method	
Table 5.6 The features selected by feature selection stage using SBS, SFS, SFI and BBS methods	FS
Table 5.7 Comparison between our best results and others results in the literature	
Table 5.8 The time consumption for accomplishing the feature selection stage both CAD system with each selection method (minutes)	

LIST OF FIGURES

Figure 2.1	Standard views MLO and CC of mammogram B_3603 [25]	8
Figure 2.2	Generic flowchart of a CADe and a CADx Scheme [65]	10
Figure 2.3	An Example of mini_MIAS database [24]	12
Figure 2.4	An Example of mammograms from DDSM database with mass boundary [25]	13
Figure 3.1	Example of a corrected mammogram [28]	15
Figure 3.2	Segmentation step of a mammogram (mdb014)	17
Figure 3.3	Gaussian low-pass filter GLPF	18
Figure 3.4	Result of filtering process with a GLPF and after multiply BI by SI	19
Figure 3.5	The average of the rescaled image and the peripheral equalized (PE)	20
Figure 3.6	Peripheral density correction using Tao Wu et al. algorithm for MIAS database (mdb004)	21
Figure 3.7	Peripheral density correction using Tao Wu et al. algorithm for DDSM database (C_0011_1.RIGHT_MLO)	22
Figure 3.8	Peripheral density correction using Tao Wu et al. algorithm for MIAS	24
Figure 3.9	Peripheral density correction using Tao Wu et al. algorithm for DDSM.	25
Figure 4.1	An Example of masses of some MIAS mammogram types	30
Figure 4.2	Gray Level Co-occurrence Matrix (GLCM) with Shift d=1 & $\theta = 0^{\circ}$, 45° , 90° and $135^{\circ}[47]$, $[48]$	31
Figure 4.3	A separated GLCMs at different angles with constant value of d for each coefficient matrix LH, HL or HH and averaged GLCM	
Figure 4.4	Receiver operator characteristic (ROC) curves [65]	40
Figure 4.5	On the left column ROC curves for KNN classifier at $K=1$, 3 and are depicted with $L=8$. On Right column ROC curves for KNN classifier at $K=1$, 3 and 5 are showed with $L=32$	47
Figure 4.6	On the left column ROC curves for SVM, LDA and QDA classifiers with $L=8$ are depicted. On the Right column ROC curves SVM, LDA	40
Figure 4.7	and QDA classifiers with $L=32$ are showed	
Figure 4.8	Comparison between all classifiers Performance by Cohen-k factor at each selection method with $L=8$ and 32	50
Figure 5.1		55
Figure 5.2	An Example of DDSM mammogram types [25]	59
Figure 5.3	ROC curves for KNN classifier at K=1 and 3 with SFS, SBS and BBS methods are depicted	64
Figure 5.4	Comparison between all classifiers Performance by Overall accuracy and Cohen K factor at each selection method	
Figure 5.5	Comparison between performance of all classifiers with MIAS databas (a) and DDSM database (b) by accuracy	69

LIST OF ABBREVIATIONS

ARCH Architectural distortion

ASYM Asymmetry

AUC Area Under Curve

BI-RADS Breast Imaging-Reporting and Data System

BI Blurred Image

BBS Branch and Bound Selection
CAD Computer Aided Diagnosis
CADe Computer Aided Detection
CADx Computer Aided Diagnosis

CC Cranio-Caudal

CDF The cumulative distribution function
CIRC Well-defined/circumscribed masses

DDSM The Digital Database For Screening Mammography

FFDM Full Field Digital Mammography
FDA Food and Drug Administration

FP False Positive
FN False Negative

GLCM Gray Level Co-Occurrence Matrix

GLPF Gaussian Low Pass Filter

KS-test Kolmogorov-Smirnov test

KNN K-voting Nearest Neighbor

LDA Linear Discriminant Analysis

MIAS The Mammographic Image Analysis Society

MLO Mediolateral-Oblique
MISC ill-defined masses
NN Neural Network

NTP Normalized Thickness Profile
NPV Negative Predictive Value

PPV Positive Predictive Value

QDA Quadratic Discriminant Analysis

ROC Receiver Operating Characteristic

ROI Region Of Interest

SBS Sequential Backward Selection

SFFS Sequential Floating Forward Selection

SFS Sequential Forward Selection

SI Segmentation Image SPIC Spiculated masses

SVM Support Vector Machine

T-test Unpaired student test

TN True Negative
TP True Positive

W-test Wilcoxon rank sum test

Abstract

Breast cancer is the uncontrolled growth of abnormal cells that start in the breast. It was and still the most common cancer diagnosed in women worldwide. Mammography has been successful in improving detection of cancer in early stage, and it continues to be the standard screening tool for breast cancer detection resulting in at least a 30% reduction in breast cancer deaths.

Computer-aided diagnosis (CAD) is a system that uses the output of mammography systems to help the radiologist's decision. It has been defined as an equivalent diagnosis that was made by a radiologist who uses the output of a computer analysis of the images when making his/her interpretation.

In this thesis, computer-aided detection (CADe) and Computer-aided diagnosis (CADx) systems have been developed and applied to the standard MIAS and DDSM databases to distinguish between the different regions of breast tissues. In both CAD systems, first an image processing technique is implemented to enhance the peripheral region of breast as a preprocessing step, then regions of interest (ROI) are excerpted using window of size 32×32 pixels then a set of 422 features are extracted from ROI and normalized. For CADe, the features selection is performed using statistical methods such as t-test, Kolmogorov-Smirnov test (KS-test) and Wilcoxon signed rank test (Wtest) and other methods by using Sequential Backward Selection (SBS), Sequential Forward Selection (SFS), Sequential Floating Forward Selection (SFFS) and Branch and Bound Selection (BBS) techniques. Then we used four classifiers including Kvoting Nearest Neighbor (KNN), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA) for classification stage with leave-one-out method for testing. The proposed systems were evaluated using many indices such as overall accuracy, Cohen-k factor, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the area under curve (AUC) of the ROC curves.

CADx system has the same stages but the output is different where it indicates the likelihood of lesion malignancy. In CADx, SBS, SFS, SFFS and BBS methods are used for selecting the best powerful features. Both CAD systems provided encouraging results. These results were different corresponding to selection method. Finally, we compared independently between performance of all classifiers with each selection method and we concluded that the SFS selection method was the best for both CAD systems.

In both CAD systems, we used Neural Network (NN) classifier with cross validation to try to get better performance as much as possible with each selection method.

In general, with the best feature selection algorithms the results that we obtained on the MIAS dataset show that 100% of samples were correctly classified, while the DDSM dataset results show 98.67% agreement. This is the most important point in this thesis.

Chapter 1: Introduction

1.1. Overview of the Thesis

Breast cancer was the feared disease before the 20th century as if it was shameful disease. Where breast cancer was the most common cancer diagnosed in women worldwide. However, after a little could be safely done with primitive surgical techniques, women tended to suffer silently rather than discussion care. After that when surgery advanced, and long-term survival rates improved, women began raising awareness of the disease and the possibility of successful treatment [1].

Breast cancer is the uncontrolled growth of abnormal cells that start in the breast, usually in the inner lining of the milk ducts or lobules. There are different types of breast cancer, with different stages, aggressiveness, and genetic makeup. With best treatment, ten years disease-free survival varies from 98% to 10%. Treatment includes surgery, drugs such as hormone therapy and chemotherapy and radiation. Breast cancer is the most common cancer and continues to be a significant public health problem among women around the world. Primary prevention seems impossible since the cause of this disease still remains unknown. It is believed that the most promising way to decrease the number of patient suffering from the disease is by early detection. The earlier breast cancer is detected, the better the chances that treatment will work and the better a proper treatment options can be provided [2].

Among U.S. women, breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death, following lung cancer. Through two years ago, an estimated 232,340 new cases of invasive breast cancer and 39,620 breast cancer deaths are expected to occur among U.S. women [3].

Mammography has been successful in improving detection of cancer, particularly non-palpable breast masses and calcifications that may be malignant. Mammography continues to be the standard screening tool for breast cancer detection resulting in at least a 30% reduction in breast cancer deaths [4].

There has been some recent contention over the benefit of mammography screening and the available evidence relating mammography screening with mortality may not be definitive. However, a recent Institute of Medicine Report on Mammography (Committee on the Early Detection of Breast Cancer 2001) suggests that the reduction in mortality from breast cancer observed in recent years may be due to earlier detection through mammography screening [5].

By incorporating the expert knowledge of radiologists, the computer-based systems provide a second opinion in detecting abnormalities and making diagnostic decisions. Such a diagnostic procedure is called computer-aided diagnosis (CAD). A computerized system for such a purpose is called a CAD system. It has been shown that the performance of radiologists can be increased by providing them with the results of a CAD system. Hence, there are strong motivations to develop a CAD system to assist radiologists in reading mammograms [6].

1.2. Thesis Objective

The main objective of this thesis is to develop a computer-aided detection (CADe) system and a computer-aided diagnosis (CADx) system by developing algorithm for classification of abnormal lesions in breast cancer to distinguish between normal, benign and malignant cases using different set of features.

This algorithm includes five main stages, pre-processing stage is achieved by using image processing algorithm, Region of Interest (ROI) selected inside the suspicious area of mammogram, features extraction from ROI, features Selection to select the most powerful features and finally classification stage in order to differentiate between normal, benign and malignant group using different classifiers.

We divided the main objective of the thesis into two sub-objectives. The first sub-objective is to develop a CADe system for classifying abnormal lesions in mammograms to distinguish between normal and abnormal lesions. We will develop this system by using seven feature selection algorithms and four classifiers and compare between each classifier with each selection method.

The second sub-objective is to develop a CADx system that will be able to distinguish between normal, benign and malignant breast tissues. This system will has many advantages to support the radiologists' opinion and help them to take a truth decision in short time especially with huge cases of patients.

In each sub-objective we applied image processing technique for peripheral breast tissue enhancement by using Tao Wu' et al. algorithm [33], as a first step for each CAD system, for enhancement the peripheral area of breast. We explained this algorithm in chapter 3. In previous studies the researchers concluded that the results of CAD system are better with pre-possessing stage or peripheral enhancement technique of breast tissue. In the final we compared between the behaviors of all classifiers with each CAD system.