SERUM APELIN IN CHILDREN AND ADOLESCENTS WITH TYPE 1 DM: RELATION TO GLUCOSE METABOLISM AND INSULIN SENSITIVITY

Thesis
In partial fulfillment of masters degree in pediatrics

Presented by

Nehal Refat Abdel Aleem

M.B.B.Ch. 2008, Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Mona Hussein El Samahy

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Abeer Ahmed Abd Elmaksoud

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Dina Elsayed Elshennawy

Lecturer Professor of Pediatrics Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2014

Thanks to ALLAH Who helped me to accomplish this work

My deepest and warmest gratitude to my great supervisor Professor Mona Hussein Elsamahy, Professor of Pediatrics, faculty of Medicine, Ain Shams University, Who in addition to her valuable guidance and supervision, has provided me with a great deal of support, encouragement and knowledge

I would like to express my great appreciation and thanks to Doctor Abeer Ahmed Abd El Maksoud, Assistant Professor of Pediatrics, faculty of medicine, Ain Shams University. It was an honor to me to carry out this work under her continuous guidance, and supervision encouragement and expert supervision.

The present work could not have been done without the help of Doctor Dina Elsayed Elshenawy, Lecturer of Clinical pathology, Faculty of medicine Ain Shams University, for hr guidance and continuous support.

Contents

Introduction	1
Aim of the Work	4
Review of Literature	
• chapter (1): Diabetes mellitus	5
• chapter 92): the apelinergic system	35
Chapter (3): Apelin	56
Patients and Methods	72
Results	80
Discussion	107
Summary	121
Conclusion	125
Recommendations	126
References	127
Arabic Sumary	

List of Tables

Table No.	Title	Page No.
Table (1):	Characteristic features of t compared with type 2 diabetes in people	n yougn
Table (2):	The clincial and biological characters of the different subtypes of diabetes.	type 1
Table (3):	Complications of type 1 diabetes	34
Table (4):	Age distribution among coruncontrolled diabetic and control g	
Table (5):	Sex distribution among coruncontrolled diabetic and control g	
Table (6):	Antrhopometric measures didfi- among controlled, uncontrolled and control groups	diabetic
Table (7):	Age at diagnosis and duration of among controlled and uncodiabetic groups	ntrolled
Table (8):	Incidence of complciations controlled and uncontrolled groups	diabetic
Table (9):	Demonstrating vital data measuramong controlled, uncontrolled and control groups.	diabetic
Table (10):	comparison between cor uncontrolled diabetic and control as regards lipid profile	groups

Table (11):	Comparison between controlled uncontrolled diabetic and control groups as regrds lab investigations94
Table (12):	comparison between controlled, uncontrolled diabetic and control groups as regards serum aplin level96
Table (13):	Correlation between apelin level and various variables in the three studied groups
Table (14):	comparison of various variables in patients with HOMA-IR \leq 3.16 and those with HOMA-IR $>$ 3.16
Table (15):	ROC curve analysis for prediction of diabetes usign apelin level101
Table (16):	ROC curve analysis for prediction of the status of disease control using apelin level
Table (17):	ROC curve analysis for prediction of HOMA-IR > 3.16 using serum apelin level105

List of Figures

Fig. No.	Title	Page No.	
Figure (1):	reported "Small molecule" APJ agonis	st	38
Figure (2):	Intacellular pathways responsibe		, ,
8 ()	positive inotropic effect of the apel		
	interaction		12
Figure (3):	Intracellula rpathways responsibel		
_	vasomotor effects in the apel	in/APJ	
	interaction in the absence and i	in the	
	presence of endothelial dysfunction		16
Figure (4):	Adipose tissue releases several adipol	kines6	31
Figure (5):	immunostatinign for apelin		71
Figure (6):	Age distribution akong conf	trolled,	
	uncontrolled diabetic and control grou		31
Figure (7):	Sex distribution among cont		
	uncontrolled diabetic and control grou		32
Figure (8):	Body mass index among conf		
	uncontrolled diabetic and conrol group	-	34
Figure (9):	Showing age at diagnosis fo diabetes	_	
	controlled and uncontrolled diabetic g	•	35
Figure (10):	Showing duration of diabetes	•	
	controlled and uncontrolled diabetic g	-	36
Figure (11):	Tshowing daily insulin dose	_	
	controlled and uncontrolled diabetic g	•	36
Figure (12):	Showing incidence of complciations	_	
T! (10)	controlled and uncontrolled diabetic g	•	38
Figure (13):	Heart rate among controlled, uncon		
E' - (14)	diabetic and control groups		<i>)</i> U
Figure (14):	Blood pressure among cont		20
Figure (15).	uncontrolled diabetic and control grou HDL among controlled, uncon		10
Figure (15):	diabetic and control groups		າດ
Figure (16):	HDL among controlled, uncon		14
rigure (10):	diabetic and control groups		າວ
Figure (17):	Triglyceride amogn controlled, uncon		14
1.18n1c (11):	diabetic and control groups) 3
Figure (18):	Total cholesterol among conf		,0
1 1gure (10).	uncontrolled diabetic and control grou	•	93

Figure (19):	Fasting blood glucose showing HbA1 C	
	among controleld and uncontrolled diabetic	
	groups	. 95
Figure (20):	Showing HbA1c among controlled and	
	uncontrolled diabetic groups	95
Figure (21):	Serum apelin level among controlled,	
	uncontroled diabetic and control groups	97
Figure (22):	ROC curve for prediction of disease status	
	using serum apelin level	102
Figure (23):	ROC curve for prediction of the status of	
	disease control using serum apelin level	104
Figure (24):	ROC curve for prediction of HOMA-IR > 3.6	
_	using serum apelin level	106

List of Abbreviations

AA Aminoacids

ACE2 Angiotensin converting enzyme 2

ACTH Adrenocorticotrophic hormone

ADA American Diabetes Association

Ang II Angiotensin II

APJ Apelin recpeotr

AT-1 Angiotensin II type 1 receptor

AUC Areas under the curve

BMI Body mass index

cGMP Cyclic guanosine monophosphate

CNS Central nervous system

CVD Cardiovascular disease

DAG Diacylglycerol

DIAMOND Diabetes mondiale

DM Diabetes mellitus

eNOS Endotheial nitric oxide Synthase

ERKs Extracellular regulated kinases

EURODIAB European diabetes

FSH Follicle stimulating hormone

GPCRs G protein-coupled membrane receptors

h Hour

HO Null hypothesis

HbAlc Glycosylated Hemoglobin

HF heart failure

HLA Human Leucocytic Antigen

HOMA-IR Homeostatic model assessment- insulin

resistance

IDDM insulin-dependent diabetes mellitus

IL interleukin

kg kilogram

LADA latent auto-immune diabetes of adult

LH luteinizing hormone

MCP monocyte chemo-attractant protein

MHC major histocompatibility complex

ml milliliter

NCX Na+-Ca2+ exchanger

ng nanogram

NHE Na+-H+ exchanger

NO nitric oxide

PCR polymerase chain reaction

PI3K Phosphoinositide 3-kinase

PKC Protein Kinase C

PLC phospholipase C

P_{max} Maximum pressure

pmol pico mole

PTX pertussis toxin

SNPs Single nucleotide polymorphisms

T1D Type 1 diabetes

T2D Diabetes mellitus type 2

Th T helper cell

TNFa Tumor necrosis factor -α

Introduction

Diabetes Mellitus (DM) is group of metabolic diseases characterized by hyperglycemia resulting from defect in insulin secrtion, insulin action, or both (American Diabetes Association, 2007).

Apelin, a recently described adipocytokine, is abundantly expressed in adipose tissue and produced in the endothelial cells in various parts of the body (*Kleinz et al.*, 2004).

Plasma apelin levels were reported to increase in obesity in association with hyperinsulinemia (*Boucher et al., 2005*).

The first evidence of an involvement of apelin on insulin secretion came from the study of Sorhede Winzell et al. showing that apelin inhibits insulin secretion stimulated by glucose in vivo in mice and in vitro in isolated islets of Langerhans (Sorhede Winzell et al., 2005).

Apelin was also shown to stimulate glucose transport in an AMPK-dependent manner in human adipose tissue (*Attane et al., 2011*). Moreover, in insulin-resistant 3T3-L1 adipocytes (due to TNFa treatment for 24 h), insulin-stimulated glucose uptake was reduced by 47%, whereas apelin treatment resulted in an increased glucose uptake through the PI3K/Akt pathway and improved insulin-stimulated glucose uptake (*Zhu et al., 2011*).

Intravenous apelin administration at low concentration (200 pmol/kg) decreased blood glucose in mice and improved glucose (*Dray et al.*, 2008).

Furthermore during an hyperinsulinemic-euglycemic clamp, when the hepatic glucose production is totally inhibited, apelin increases glucose utilization throughout the entire organism mainly due to a rise in glucose uptake by skeletal muscles and adipose tissues. In isolated skeletal muscle (soleus), apelin stimulates glucose transport and its effect is additive to that of insulin (*Dray et al., 2008*).

The role of central apelin on glucose metabolism has been recently studied in our group. Acute intracerebroventricular, apelin has differential effect depending of the injected dose and the nutritional status. Acute low-dose intracerebroventricular. apelin injection decreased peripheral fed glycemia, increased glucose and insulin tolerance in mice via a NO signaling pathway. All these beneficial actions of i.c.v. apelin on glucose homeostasis were blunted in **HFD** obese/diabetic mice. As the opposite, acute high-dose of intracerebroventricular. injection apelin provoked fasted hyperglycemia/ hyperinsulinemia and decreased insulin sensitivity in normal mice (Duparc et al., 2011).

Aim of the work

To evaluate Serum apelin level in children and adolescent with type 1 diabetes mellitus and its relation to glycemic control, lipid metabolism and markers of insulin sensitivity.

Diabetes Mellitus

Definition

Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia resulting from defect in insulin secretion, action, or both (ADA, 2007).

DM is not a simple disease but it is a heterogeneous group of disorders in which there are distinct genetic pattern of inheritance as well as separate etiologic and physiologic mechanisms all leading to impairment of glucose metabolism (*Gabir et al.*, 2000).

Systemic vascular dysfunction is a central part of the pathophysiology of both type I insulin dependent and type II non insulin dependent coronary heart disease is the leading cause of morbidity and mortality in diabetes and account for 60% of death in this group peripheral vascular disease, retinopathy and nephropathy are all more common in diabetes and lead to significant morbidity (Schallewijle et al., 2005).

The development and progression of diabetic complications are strongly related to the degree of glycemic control (*Ozmen and Boyuada*, 2003).

Classification

Etiologic classification of diabetes mellitus American diabetes Association (ADA, 2007)

 I. Type 1 B -cell destruction, usually leading to absolute i a. Autoimmune 	nsulin deficiency
b. Idiopathic	
II. Type 2	
May range from predominantly insulin resistand to a predominantly secretory defect with or with	
III. Other specific types	
A. Mongenic defects of B -cell function	F. Drug- or chemical-induced
1. HNF-1a MODY (MODY 3),	1. Glucocorticoids
2. Glucokinase MODY (MODY 2)	2. Vacor
HNF-4 a MODY (MODY 1),	3. Pentamidine
4. HNF-18 MODY (MODY 4)	4. Nicotinic acid
WFS1 Wolfram syndrome	Thyroid hormone
6. Neonatal diabetes	6. Diazoxide
7. Other MODY	8-adrenergic agonists
B. Mitochondrial diabetes	8. Thiazides
	9. Dilantin
	10. a -Interferon
	11. Others
C. Genetic defects in insulin action	G. Infections
1. Type A insulin resistance	 Congenital rubella
2. Leprechaunism	2. Cytomegalovirus
Rabson-Mendenhall syndrome	3. Others
4. Lipoatrophic diabetes	
5. Others	