The Role of Magnetic Resonance Imaging in Evaluation of Sport injuries of the Knee joint

Essay Submitted for Partial Fulfillment of Master Degree In Radiodiagnosis

By

Thomas Helmi Hosni Kamel M.B.B.Ch

Supervised by

Prof. Dr. Mounir Sobhy Guirguis

Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Assistant Prof. Dr. Samer Malak Botros

Assistant Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2011

CONTENTS

- Introduction and aim of the work.
- MR anatomy of knee joint.
- Pathology of sport knee injury.
- Technique of MRI of the knee joint.
- MRI manifestation of sport knee injury with illustrations.
- Summary and conclusion.
- References.
- Arabic summary.

Introduction

Promotion of a physically active lifestyle is encouraged worldwide, particularly with regard to the many health benefits. In children and adolescents, regular sports practice facilitates the development of fundamental movement skills, helps to prevent obesity and its long-term consequences and has long-lasting benefits on bone health (*Frisch et al.*, 2009).

Unfortunately, increased intensity and volume of sport practice lead to a higher rate of acute and overuse injuries. For the young athlete, the consequences of sports injuries could be numerous, ranging from re-injury to career-ending. Long-term impacts of sports injuries are frequently found in adulthood, such as an accelerated development of osteoarthritis. In addition to the potentially long-term outcomes of sports injuries on later life, the related healthcare costs constitute a substantial economic burden. Reduction of only a moderate proportion of all sports injuries is of significance for the young athletes' health and could have a long-term economic impact regarding healthcare costs (*Caine et al.*, 2006).

The knee is the largest joint in the body and subjected to enormous loads during many sports activities. However, it is a relatively unstable and intricate joint with numerous tendinous, ligamentous, and meniscal attachments, which make it particularly vulnerable to complex injuries after trauma (*Christopher et al.*, 2008).

The main acute injuries in youth sports are sprains, fractures, dislocations and contusions. Overall, sprains account for 27–48% of all injuries in the young athlete, with the knee being the most common anatomical location for sprains. The injury type that has received most attention is the knee sprain, resulting in ACL or meniscus tears. Typically, sports such as tennis, volleyball, handball, basketball and soccer are especially concerned here (*Le Gall et al.*, 2008).

Magnetic resonance (MR) imaging of the knee has seen significant advances since its initial application, in 1984, for evaluation of the meniscus. Magnetic Resonance Imaging (MRI) is performed more commonly on the knee than on any other joint, and it is an excellent diagnostic tool that can aid in the evaluation of a host of sports-related injuries involving the ligaments, tendons, menisci, osseous structures, and articular surfaces. It has currently become the most widely used non invasive imaging method for detecting meniscal injuries, with a reported diagnostic accuracy of as high as 98%, compared to arthroscopy, remaining the gold standard for confirming the diagnosis of meniscal tear. (*Karachalios et al.*, 2005).

MR imaging provides high anatomic and pathologic definition of soft tissue, ligaments, fibrocartilage, and articular cartilage. Fast spin-echo (FSE) imaging, used in conjunction with fat-suppression (FS) MR techniques, has extended the sensitivity and specificity of MR in the detection of articular cartilage injuries and the evaluation of meniscal tears. Additional advantages of MR imaging are multiplanar and thin-section capabilities and the ability to evaluate subchondral bone and marrow (*Stoller*, 2007).

Aim of the work

The aim of the study is to emphasize the role of Magnetic resonance imaging in the assessment of sport injuries of the knee joint.

References

- Caine D, Caine C, Maffulli N.Incidence and distribution of pediatric sport-related injuries.Clin J Sport Med ,2006;16:500-513.
- Christopher J. Gottsegen, Benjamin A. Eyer, Eric A. White, et al., Avulsion Fractures of the Knee: Imaging Findings and Clinical Significance. RadioGraphics, Oct 2008; 28:1755-1770.
- Frisch A, Croisier JL, Urhausen A et al., Injuries, risk factors and prevention initiatives in youth sport. Br Med Bull, 2009;92(1): 95-121.
- **Karachalios T, Hantes M, Zibis AH et al.,**Diagnostic accuracy of a new clinical test (the Thessaly test) for early detection of meniscal tears. J Bone Joint Surg ,2005;87:955–962.
- Le Gall F, Carling C,Reilly T.,Injuries in young elite female soccer players: an 8-season prospective study.Am J Sports Med ,2008;36:276-284.
- **Stoller D.W.**, Magnetic Resonance Imaging in Orthopaedics and Sports Medicine, Copyright Lippincott Williams & Wilkins, 3rd Edition, 2007; chapter 4, P494-495.

دور التصوير بالرنين المغناطيسي في تقييم اصابات الملاعب في مفصل الركبة

رسالة مقدمة كجزء متمم للحصول على درجة الماجستير في الأشعة التشخيصية

من

الطبيب / توماس حلمي حسنى كامل بكالوريوس الطب والجراحة كلية الطب - جامعة عين شمس

تحت اشراف

الأستاذ الدكتور/منير صبحى جرجس أستاذ الاشعة التشخيصيه كلية الطب - جامعة عين شمس

الدكتور/ سامر ملاك بطرس أستاذ مساعد الاشعة التشخيصية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

الغرض من البحث

الهدف من البحث:

التأكيد على دور الرنين المغناطيسي في تشخيص إصابات الملاعب لمفصل الركبة.

المقدمة

يتم تشجيع و نشر فكرة الحفاظ على النشاط البدنى وتأثيره على نمط الحياة فى جميع أنحاء العالم، خاصة لما له من فوائد صحية عديدة تنشط التمارين الرياضية المنتظمة تنمية المهارات الحركية الأساسية عند الأطفال والمراهقين. كما تساعد على منع الإصابة بأمراض السمنة بالإضافة إلى نتائجها على المدى الطويل وفوائدها البعيدة المدى على صحة العظام.

وتؤدى الزيادة المفرطة فى التمارين الرياضية للأسف إلى نسبة أعلى من الإصابات الخطيرة والحادة. ويمكن أن تتعدد تبعيات الإصابات الرياضية بالنسبة للرياضيين الشباب، فتتراوح ما بين تكرار الإصابة إلى حد إنهاء مستقبل للرياضي نفسه.

ودائماً تنتج آثار بعيدة المدى للإصابات الرياضية في مرحلة البلوغ مثل حدوث تطور سريع في خشونة المفاصل وبالإضافة إلى الآثار المحتملة والطويلة المدى على الحياة في وقت لاحق والناتجة عن الإصابات الرياضية، فإن تكاليف الرعاية الصحية المتعلقة بتلك الآثار تشكل عبئاً اقتصادياً كبيراً. ويعتبر انخفاض الإصابات الرياضية إلى نسبة معتدلة فقط لدى الرياضيين الشبان عاملاً هاما في صحتهم ويمكن أن يكون له تأثير اقتصادى على المدى البعيد من حيث تكاليف الرعاية الصحية.

وتعتبر الركبة من أكبر مفاصل الجسم و هومفصل مركب متعدد الملحقات الوترية، والفقرات، والأربطة والتي تجعله عرضة للإصابات المعقدة بعد حدوث الصدمات.

أما الإصابات الرياضية الرئيسية والأكثر خطورة عند الشباب فهى: الالتواءات ، الرضوض، الكسور، والكدمات وعموماً، تمثل الالتواءات نسبة ٢٧- ٤٨ ٪ من جميع إصابات الرياضيين الشبان، وتشريحياً تعتبر الركبة المكان الأكثر شيوعاً بالنسبة لأماكن حدوث الالتواءات و من أكثر أنواع الإصابات التي حظيت بالاهتمام التواء الركبة الذي قد يؤدي إلى تمزق في الرباط الصليبي الأمامي أو الغضروف المفصلي و تنتشر هذة الإصابات بوجه خاص بين لاعبى رياضات التنس، الكرة الطائرة، كرة اليد، كرة السلة وكرة القدم.

وقد شهد الرنين المغناطيسي الخاص بالركبة تطورات ملحوظة منذ بداية استخدامه في عام ١٩٨٤ للكشف عن إصابات الغضاريف. ويتم إجراء الآشعة بالرنين المغناطيسي على الركبة أكثر من أي مفصل آخر، ويعتبر وسيلة تشخيصية ممتازة والتي من الممكن أن تساعد في تقييم مجموعة من الإصابات الرياضية المتعلقة بالأربطة، الأوتار، الغضروف المفصلي، العظام، والأسطح المفصلية ولقد أصبحت الآشعة بالرنين المغناطيسي حاليا الأكثر استخداما للكشف عن إصابات الغضاريف، مع دقة في التشخيص تصل الى ٩٨٪، بالمقارنة مع المنظار، فتبقى المعيار الذهبي لتشخيص أكيد لتمزق الغضاريف.

الرنين المغناطيسى ذو درجة عالية من الوضوح من الناحية التشريحية والتشخيص المرضي للأنسجة، الأربطة، الأنسجة الغضروفية، والمفاصل وباستخدام الآشعة ذات سرعة الصدى مع تقنية الرنين المغنطيسى فى قمع الدهون، فقد أصبحت آشعة الرنين المغناطيسى أكثر دقة وتحديداً في الكشف عن إصابات الغضروف المفصلي ومن المزايا الإضافية للرنين المغناطيسى أيضاً القدرة على تقييم العظام والنخاع.

المحتويات

- المقدمة و الهدف من البحث.
- المظاهر التشريحية لمفصل الركبة بالرنين المغناطيسى.
 - باثولوجیا اصابات الملاعب فی مفصل الركبة.
 - تقنية التصوير بالرنين المغناطيسي في مفصل الركبة.
- مظاهرأصابات الملاعب لمفصل الركبة باستخدام الرنين المغناطيسي.
 - الملخص و الأستنتاج.
 - المراجع.
 - الملخص العربي.

The Role of Magnetic Resonance Imaging in Evaluation of Sport injuries of the Knee joint

Essay
Submitted for Partial Fulfillment of Master Degree
In
Radiodiagnosis

By

Thomas Helmi Hosni Kamel M.B.B.Ch

Supervised by

Prof. Dr. Mounir Sobhy Guirguis

Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Assistant Prof. Dr. Samer Malak Botros

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First of all, I thank GOD to whom I relate any success I have reached and might reach in the future.

I am greatly honored to express my sincere gratitude and appreciation to **Professor Dr. Mounir Sobhy Guirguis**, Professor of Radiodiagnosis, Ain Shams University for his meticulous supervision, loyal encouragement and valuable advices throughout the work.

I would like to express my appreciation to **Assistant Professor Dr. Samer Malak Botros**, Assistant Professor of Radiodiagnosis, Ain Shams University for his sincere help, enthusiastic encouragement and kind supervision throughout the work.

Finally, I would also like to thank my parents, my wife and my friends who were, and will always be, by my side, all my life.

Thomas Helmi

List of Contents

Subject	Page
Acknowledgement	
List of Abbreviations	i
List of Figures	ii
List of Tables	vii
Introduction and aim of the work	1
MR anatomy of knee joint	4
Pathology of sport knee injury	22
Technique of MRI of the knee joint	33
MRI manifestation of sport knee injury with illustrations	56
Summary and conclusion	134
References	137
Arabic summary	

LIST OF ABBREVIATIONS

ACL Anterior collateral ligament
AM bundles Anteromedial (AM) bundles

BSSFP Balanced steady-state free precession CE-MRA Contrast-enhanced MR angiography

CSE Conventional spin echo

DEFT Driven equilibrium Fourier transform

DESS Dual-echo steady-state

DGEMRIC Delayed gadolinium-enhanced MRI of cartilage

FCL Fibular collateral ligament FEMR Fluctuating equilibrium MRI

FIESTA Fast imaging employing steady-state acquisition

FS Fat-suppression FSE Fast spin-echo

IDEAL Iterative Decomposition with Echo Asymmetry

and Least squares estimation

ITB Iliotibial band

MCL Medial collateral ligament

MEDIC Multi Echo Data Image Combination

MPFL Medial patellofemoral ligament
MRI Magnetic Resonance Imaging
PCL Posterior collateral ligament

PD Proton density

PL bundles Posterolateral (PL) bundles SAR Specific absorption rate

SNR Signal/noise ratio SPGR Spoiled gradient-echo

SSFP Steady-state free precession STIR Short-tau inversion recovery

T Tesla

TE Echo time

TR/TE Echo time/repetition time

True FISP True fast imaging with steady-state precession VIPR Vastly interpolated projection reconstruction