

STUDY ON THE ADSORPTION OF SOME ALKALI EARTH METALS ON NANO-SILICA GEL

A Thesis Submitted in Partial Fulfillment of the requirements for the M.Sc. degree in Chemistry

By Mahmoud Samy Mohamed Fahmy

B.Sc. (Chemistry) 2006

To

CHEMISTRY DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

(2014)

Approval Sheet

Name of candidate: Mahmoud Samy Mohamed Fahmy Degree: M.Sc. Degree in Chemistry

Thesis Title STUDY ON THE ADSORPTION OF SOME ALKALI EARTH METALS ON NANO-SILICA GEL

This Thesis has been approved by:

1-Prof. Dr. Salah A. Abo-El-Enein Signature:

2-Prof. Dr. Samy Framawy Mahmoud Signature:

3-Prof. Dr. Yasser Mohamed Moustafa Signature:

Head of Chemistry DepartmentFaculty of Science –Ain Shams University

Prof. Dr. Hamed Ahmed Younis Derbalah

Qualification

Name: Mahmoud Samy Mohamed Fahmy

Scientific Degree: M.Sc.

Department: Chemistry.

College: Faculty of Science

University: Ain Shams University

B.Sc.: 2006

Acknowledgement

In the name of ALLAH, the most Gracious and the most Merciful

First of all and in all times; thanks to ALLAH Almighty, the most Merciful, for blessing and guiding me to success in life.

I wish to express my sincere gratitude and deeply indebted to **Prof.Dr. Salah A. Abo-El-Enein** Prof. of Physical Chemistry faculty of science, Ain Shams University, for his supervision and supporting this work, and for sponsoring the thesis to the university.

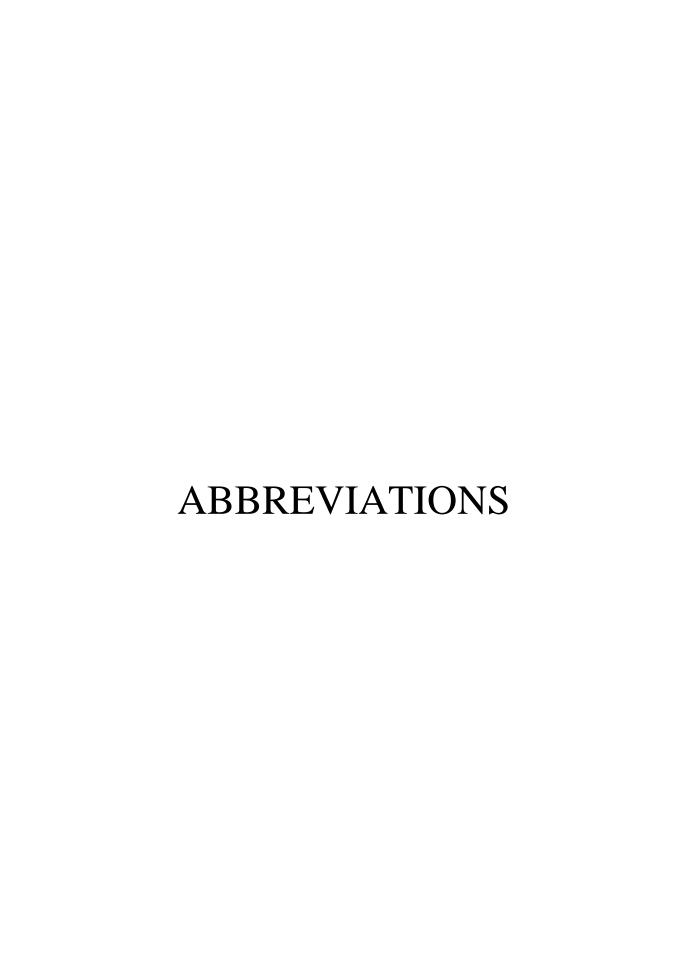
My deepest thanks extended to the spirit of the late **Prof. Dr.**Sami Faramawy, the founder of the central laboratory at the Egyptian
Petroleum Research Institute, that I convicted him a debt of gratitude
and also facilitate all the possibilities and offering all instruments and
facilities in central laboratory.

I would like to express my deepest appreciation and deeply indebted to **Prof.Dr.Yasser M. Moustafa** Prof. vice director of Egyptian Petroleum Research Institute and Director of central laboratory at EPRI, for his trust, patience, great insight, modesty, and friendly persnality have always been an inspiration for me and will deeply influence my career and future life.

I would like to express my deepest thanks and sincere appreciation to **Prof.Dr. Tamer Zaki Sharara** Catalysis department-Petroleum Refining Division at EPRI. Deputy Manager of Central Analytical Laboratories, for his continuous supervision, assistance, support, knowledge and guidance during all phases of this work and his efforts made this a successful work.

I would like to express my deepest thanks and sincere appreciation to **Dr. Waleed I. El-Azab**, Analysis and Evaluation department, Egyptian Petroleum Research Institute, for his brotherly and friendly advising and supporting this work through cooperation, continuous guidance during this work.

I owe my warmest thanks to Egyptian Petroleum Research Institute especially Central Laboratory for offering all facilities helping me throughout this work. And special thanks go also to all members of the Water Lab for being near me and for encouraging me. I wish to extend my sincere thanks to everybody who helped me and promoted me during this study.


CONTENTS

	Page
Acknowledgment	I
Contents	III
List of Abbreviations	VII
List of Tables	X
List of Figures	XI
Aim of The Present Work	1
Chapter I: Introduction	2
1.1. Alkaline Earth Metals	2
1.2 Impact of the Alkali Earth Metals on the	4
Human, Environment System	4
1.3 Scaling in Gas and Oil Industries	5
1.3.1 Factors That Affect Scale Precipitation,	
Deposition and Crystal Growth	6
1.4 The Methods Used For Treatment of the Scale	
Problem	15
1.4.1 Scale removal	15
1.4.2 Scale Prevention	16
1.5 Adsorption of Alkaline Earth Metals	16
1.5.1 Silica Gel	20
1.5.2 Microwave Assisted Synthesis	23
Chapter II: Experimental	26
2.1 Materials Used	26
2.2 Preparation of Nano Silica Gel	26
2.3 Characterization of Prepared Nano Silica Gel	29
Adsorbent	29
2.3.1 Powder X-ray Diffraction (XRD)	29
2.3.2 Fourier Transform Infrared (FT-IR)	
Spectroscopy	30

	Page
2.3.3 Size Dynamic Light Scattering (DLS)	30
2.3.4 Zeta Potential	30
2.3.5 Nitrogen Adsorption	31
2.3.6 Thermal Analysis	31
2.3.7 Transmission Electron Microscopy (TEM)	32
2.4 Adsorption of Alkali Earth Metals on Prepared	
Nano Silica Gel	32
Chapter III: Results and Discussion	34
3.1 Characterization of the Prepared Silica Gel	
using Inorganic and Organic Acids	34
3.1.1 Thermal analysis	34
3.1.2 Powder X-ray diffraction	37
3.1.3 Fourier transform infrared spectroscopy	40
3.1.4 Nitrogen adsorption-desorption isotherms	
and porosity analysis	42
3.1.5 Zeta potential analysis	59
3.1.6 Morphology and Microstructure	61
3.2 Evaluation of the Adsorption Capacity of the	
Prepared Samples towards Alkaline Earth Metals	65
3.2.1 The effect of silica gel	65
3.2.2 The effect of the initial concentration of	
the adsorbate	69
3.2.3. The effect of competing metal ions	71
3.2.4. The effect of adsorption time	73
3.2.5. The effect of shaking rate	75
3.2.6. The effect of medium initial pH	76
3.2.7. The effect of medium temperature	78
3.2.8. The effect of the initial concentration of	
the adsorbate on the separation factor	82
3.2.9. Equilibrium of adsorption	86

	Page
3.2.9.1. Langmuir isotherm model	88
3.2.9.2. Freundlich isotherm model	89
3.2.9.3. Dubinin-Radushkevich isotherm model	91
3.2.9.4. Temkin isotherm model	92
3.2.9.5. Error analysis	93
3.2.9.6. Adsorption isotherm	95
3.2.10. Kinetic studies	106
3.3 Characterization of the Prepared Silica Gel	
Samples using Microwave Irradiation	112
3.3.1 Thermal analysis	114
3.3.2 Powder X-ray diffraction	122
3.3.3 Fourier transform infrared spectroscopy	125
3.3.4 Nitrogen adsorption-desorption isotherms	
and porosity analysis	128
3.3.5 Zeta potential analysis	145
3.3.6 Morphology and Microstructure	146
3.4 Evaluation of the Adsorption Capacity of the	150
Prepared Samples towards Alkaline Earth Metals	130
3.4.1 The effect of microwave aging	150
3.4.2 The effect of microwave power	153
3.5 Characterization of the Prepared Silica Gel	
Samples using Microwave Irradiation in Presence	155
of Surfactant	
3.5.1 Thermal analysis	156
3.5.2 Powder X-ray diffraction	160
3.5.3 Fourier transform infrared spectroscopy	163
3.5.4 Nitrogen adsorption-desorption isotherms	166
and porosity analysis	100
3.5.5 Zeta potential analysis	175
3.5.6 Morphology and Microstructure	176
77.37 1813/11/11/27/27 8 (1115) 18115/11/53/11/53/11/5/	

	Page
3.6 Evaluation of the Adsorption Capacity of the	180
Prepared Samples towards Alkaline Earth metals	100
Chapter IV: Summary and Conclusions	183
References	187
Arabic Summary	

