Recent Trends in Diagnosis and Treatment of Cholangiocarcinoma

An Essay Review Submitted for the Partial Fulfillment of Master Degree in General Surgery

Submitted By

Mourad Mohammad Moataz Ali Abdul-Khaliq

(M.B., Ch.B. - Ain Shams University)

<u>Under the Supervision of</u>

Prof. Dr.

Hisham Abdel-Raouf Al-Akkad

Professor of General Surgery
Faculty of Medicine - Ain Shams University

Dr.

Mohamed Ibrahim Hassan

Lecturer of General Surgery

Faculty of Medicine - Ain Shams University

Ain-Shams University

2015

In the Name of Allāh, the Most Gracious, the Most Merciful

<u>Acknowledgement</u>

Praise is to *Allah*, the one and the only, the most merciful, the most generous, for aiding me and allowing me to fulfill this quest; Peace and prayers are upon *Mohammad*, the prophet of mercy upon Mankind.

A cornerstone of acknowledgement, due gratitude and sincere apprecation to:

∽ Prof. Dr. Hisham A. Al-Akkad 🔊

Professor of general surgery, Ain Shams University.

for his precious scientific supervision, kind assistance, patient guidance and great mentoring throughout this review.

'Sir, I can find no words of gratitude to express my debt and appreciation of your kind and precious support.'

I am very much indebted to:

—∽∽ Dr. Mohamed Ibrahim Hassan 🖘

Lecturer of general surgery, Ain Shams University.

who made this review possible throughout his elder-brotherly attitude, kind supervision, precious advices; and for his time, endless effort and support.

'Sir, no words of thankfulness can express my gratitude and appreciation of your generous help and kind support.'

A rapid whisper of thankfulness, to my ever-supporting wife and Parents.

Introduction:

The hallmarks of choosing this topic to be reviewed are the characters of that condition as being a sufficiently serious one, with a rather common existence on basis of classification of hepatic malignancies, meanwhile a modest delay in the diagnosis and initialization of treatment, will be reflected instantly in the prognosis of a given case.

Cholangiocarcinoma is difficult to be diagnosed in part because of its relative rarity, and because it is clinically silent until it becomes an advanced disease with obstructive symptoms (Olnes & Erlich, 2004).

Understanding of carcinogenesis and metastasis of cholangiocarcinoma at the molecular level will provide tools for better prevention, diagnosis and treatment. Cholangiocarcinoma is the term applied to the primary malignant neoplasm arising from the biliary tract (it was first described by Durand - Fardel in 1840), they are categorized according to its site into intra-hepatic, hilar and distal bile duct cancers, it is a slow growing tumor but highly metastatic with a poor prognosis (**Praviz and Pearce, 2004**).

The incidence of bile duct cancer in autopsy series ranges from 0.01% to 0.46% (Praviz and Pearce, 2004).

The intra-hepatic variety is the second most common primary hepatic malignancy after hepatocellular carcinoma (Chari et al, 2009).

Cholangiocarcinoma accounts for 3% of GI malignancies. Usually presents between ages 50-70 but can present earlier in patients with primary sclerosing cholangitis (PSC), ulcerative colitis and in patients with

choledochal cysts, slightly higher incidence in men. Recently, many advances have been made in understanding the causes and pathogenesis as well as in diagnosing and treating cases of cholangiocarcinoma & bile duct cancers (Jones et al, 2000).

Over the past few decades, remarkable advances in imaging technology have been made that allow more accurate diagnosis of biliary tract diseases and better planning of surgical procedures and other interventions aimed at managing these conditions. (**Taylor et al, 2006**).

Ultrasound or computed tomography scans usually detect dilated intrahepatic bile ducts. Transhepatic cholangiography or endoscopic retrograde cholangiopancreatography (ERCP) clearly detect the lesion and both are indicated in most cases, transhepatic cholangiography is of greater value. Recently, magnetic resonance imaging with cholangiography (MRCP) takes the upper hand as the most informative noninvasive modality for diagnosis of bile duct tumors (Pitt et al, 2005).

The clinical features of cholangiocarcinoma depend on the location of the tumor; Approximately 60%-70% of cholangiocarcinomas occur at the hepatic duct bifurcation, and the remainder occurs in the distal common bile duct (20%-30%) or within the liver (5%-15%).

Patients with extrahepatic tumors usually present with painless jaundice from biliary obstruction, Common complaints include pruritus (66%), abdominal pain (30%-50%), weight loss (30%-50%), and fever (up to 20%).Other symptoms related to the biliary obstruction include clay-colored stools and dark urine. Patients with intrahepatic

cholangiocarcinomas rarely present with jaundice; most often they present with dull right upper quadrant discomfort and weight loss.

Surgery is the only curative treatment for cholangiocarcinoma. However, there are several restrictions on which people are eligible for surgery. There are several large blood vessels which travel next to the common bile duct, namely the hepatic artery and portal vein. Generally, if these vessels are surrounded by tumor, surgery is not possible, though at some centers surgery will be attempted with reconstruction of the removed blood vessels. If the tumor has grown into the liver or metastasis form in the liver, surgery is generally not considered. If tumor has spread to the lymph nodes or to the abdominal cavity, surgery is also contraindicated (Shinohara et al,2009).

Operative techniques have been improved as a result of a better understanding of biliary and hepatic anatomy and physiology. Moreover, the continuing evolution of minimally invasive surgery has promoted the gradual adoption of laparoscopic approaches to these complex operations. Accordingly, biliary tract surgery, like many other areas of modern surgery, is constantly changing (Bartlett et al, 2006).

Patients with cholangitis whose conditions fail to improve with conservative treatment usually require urgent decompression of the obstructed biliary system. Recent studies show that the long-term success rate of endoscopic stenting is comparable to that of surgery, with similar recurrence rates. Therefore, surgery should probably be reserved for those patients with complete ductal obstruction or those in whom endoscopic therapy has failed (Furmanczyk et al, 2005).

Surgical intervention is recommended for those patients who are otherwise healthy, whose disease appears to be localized, or in whom duodenal or gastric outlet obstruction is present, palliative surgery is directed towards relieving jaundice by creating a biliary-enteric anastomosis, and if a gastric or duodenal outlet obstruction is present or a likely possibility, a gastro-jejunostomy should be created at the same time. Although palliative surgery is effective in achieving its goal of circumventing the obstruction, no survival advantage has been described when compared with non-operative techniques (Furmanczyk et al, 2005).

We need to improve the diagnosis, so identifying tests that improve the yield of biopsy is very important. There is currently much work being performed with gene profiling in bile and identifying serum markers (Alvaro et al, 2010).

The aim of the study:

This study aims at reviewing the different algorithms and protocols recently adopted in the diagnosis and treatment of cholangiocarcinoma, in order to find an optimal plan for early diagnosis and for treatment of different patients having this disease.

Contents of the study:

- ✓ Acknowledgement
- ✓ Introduction
- ✓ Aim of the study
- ✓ List of Acronyms and Abbreviations
- ✓ List of Figures
- ✓ List of Tables
- ✓ Review of the literature:
 - 1. Chapter 1: Surgical anatomy of the liver and biliary tree.
 - 2. *Chapter 2:* Pathophysiology of Cholangiocarcnoma.
 - 3. *Chapter 3:* Diagnosis and assessment plan.
 - 4. <u>Annex 1:</u> (Differential diagnoses of CCA)
 - 5. Chapter 4: Treatment plan for established cases
 - 6. Annex 2: (Recommendations of management of CCA)
- ✓ Summary
- ✓ References
- ✓ Arabic Summary

List of Acronyms / Abbreviations

5'-NT 5'-Nucleo-Tidase

AFP serum Alpha-FetoProtein

AJCC American Joint Committee on Cancer

ALP Alkaline Phosphatase

ALT serum Alanine aminoTransferase AST serum Aspartate aminoTransferase

CA ^{19–9} Carbohydrate Antigen

CCA CholangioCarcinoma (i=Intrahepatic, p=Perihilar, d=Distal)

CEA CarcinoEmbryogenic Antigen
CEUS Contrast-Enhanced UltraSound
CHA Common Henatic Artery

CHA Common Hepatic Artery
CHD Common Hepatic Duct
CL Caudate Lobectomy

CLC Cholangiolocellular Carcinoma

CSC Cancer Stem Cell

CT Computed Tomography
CTC CT Cholangiography

Cyfra Cytokeratin fragment (Cyfra 21-1 is a fragment of cytokeratin 19)

DIA Digital Image Analysis

EASL— European Association for the Study of the Liver - European EORTC Organisation for Research and Treatment of Cancer

EMT Epithelial-Mesenchymal Transition ENBD Endoscopic NasoBiliary Drainage

ERC Endoscopic Retrograde Cholangiography

ERCP Endoscopic Retrograde Cholangio-Pacreatography

EUS Endoscopic UltraSound

FCAT Federative Committee on Anatomical Terminology

FDG Fluoro-Deoxy-Glucose

FISH Fluorescence In Situ Hybridization

FLR Future Liver Remnant FNA Fine-Needle Aspiration

GGT Gamma-Glutamyl Transpeptidase

HBcAb Hepatitis B core Antibody HBsAb Hepatitis B surface Antibody HBsAg Hepatitis B surface Antigen

HBV Hepatitis B Virus

HCC HepatoCellular CarcinomaHCV (Ab) Hepatitis C Virus (Antibody)HIV Human Immunodeficiency Virus

HPC Hepatic Progenitor Cells

HPD Hepato-Pancreatico-Duodenectomy

HR Hepatic Resection
IDUS IntraDuctal UltraSound

IFN - γ Interferon – γ

IGF1 Insulin-like Growth Factor 1

IgG/ IgM Immunoglobulin G/ Immunoglobulin M

IHPBA International Hepato-Pancreato-Biliary Association

IL - 6 or 12 InterLeukin - 6 or 12

INR International Normalized Ratio

IVC Inferior Vena Cava
LGA Left Gastric Artery
LHA Left Hepatic Artery
LHV Left Hepatic Vein
LTx Liver Transplantation

Mcm Minichromosome maintenance replication protein

MDCT Multi-Detector Computed Tomography

MHV Middle Hepatic Vein

MRCP Magnetic Resonance Cholangio-Pancreatography

MRI Magnetic Resonance Imaging

MSKCC Memorial Sloan-Kettering Cancer Center

MUC5(A)/(C) human Mucin 5, subtypes A and C

NHTMRI National Hepatology and Tropical Medicine Research Institute (Cairo)

NLI National Liver Institute (Menoufiya)
OCT Optical Coherence Tomography
PBD Preoperative Biliary Drainage

PBG's Peri-Biliary Glands

PCB's Polychlorinated Biphenyls
PD Pancreatico-Duodenectomy
PDT PhotoDynamic Therapy

PET Positron Emission Tomography

PPPD Pylorus-Preserving Pancreatico-Duodenectomy

PSC Primary Sclerosing Cholangitis

PT Prothrombin Time

PTBD Percutaneous Transhepatic Biliary Drainage

PTT Partial Thromboblastin Time
PVE Portal Vein Embolization
RFA Radio-Frequency Ablation
RHA Right Hepatic Artery
RHV Right Hepatic Vein

SMA Superior Mesenteric Artery

TACE / TACI Trans-Arterial Chemo-Embolization / Trans-Arterial Chemo-Infusion

TARE Trans-Arterial Radio-Embolization

TGF Tumor Growth Factor

THC Trans-Hepatic Cholangiography TNF - α Tumor Necrosis Factor – α

TNM Tumor - Node (L.N.) - Metastases staging system

UICC Union for International Cancer Control VEGF Vascular Endothelial Growth Factor

• List of Figures •

Figure No.	Contents	Page
	Chapter 1	
Figure 1	Anterior Surface of the liver	2
Figure 2	Posterior and inferior Surfaces of the liver	4
Figure 3	The true lobulation and segmentation of the liver	5
Figure 4	The functional division of the liver and its segments	6
rigure 4	(according to Couinaud's nomenclature)	U
Figure 5	Segmental anatomy of the liver	9
Figure 6	Surgical terminology of liver anatomy and liver resections	10
Figure 7	Distribution of portal and hepatic vessels, and bile ducts	11
Figure 8	Transverse <i>U/S</i> image of the hepatic vein confluence	12
Figure 9	Conventional anatomy of hepatic arterial system	13
Figure 10	Congenital anomalies of hepatic artery	14
Figure 11	Contrast enhanced CT of the liver	15
Figure 12	Portal pedicles	15
Figure 13	Riedel 's lobe of the liver	16
Figure 14	Congenital anomalies of biliary anatomy	17
Figure 15	Anatomical Variations of gall bladder	18
Figure 16	Anatomical Variations of gall bladder	18
Figure 17	Anatomical Variations of cystic duct	19
Figure 18	Anatomical Variations of cystic artery	20
Figure 19	Congenital anomalies of cystic artery	20
Figure 20	Intrahepatic distribution of the bile ducts.	21
Figure 21	The bile duct blood supply	23
Figure 22	Superficial lymphatic drainage of the liver	24
Figure 23	Deep lymphatic drainage of the liver	25
Figure 24	Nerve supply of the biliary system	26
	Chapter 2	
Figure 25	Bismuth's classification of cholangiocarcinomas	29
Figure 26	Cholangiocarcinogenesis model	33
Figure 27	Gross picture of pCCA	34
Figure 28	Microscopic Picture of CCA	36
Figure 29	Immunohistochemistry of CCA	37

Chapter 3			
Figure 30	Patterns of serum vs. biliary IGF-1	43	
Figure 31	Contrast-Enhanced UltraSound (CEUS)	46	
Figure 32	Endoscopic UltraSound (EUS) with fine-needle aspiration	47	
Figure 33	CT / ERC (cholangiogram) of CCA	48	
Figure 34	Periductal Cholangiocarcinoma, Multidetector CT and	61	
	MRCP		

Annex 1			
Figure 35	Oblique coronal gray-scale sonogram / Coronal image		
	from color-coded 3D T2-weighted MR cholangio-	65	
	pancreatography		
Figure 36	Secondary sclerosing cholangitis	66	
Figure 37	Hepatocellular carcinoma with an intrabiliary growth pattern	70	
Figure 38	Biliary tract melanoma	71	

Chapter 4			
Figure 39	A suggested treatment algorithm for patients with iCCA.	78	
Figure 40	Intraoperative view of the left liver segments approach.	89	
Figure 41	Intraoperative view of segment III delineation.	89	
Figure 42	Intraoperative view of raw surface of the liver after segment	90	
	III resection.		

• List of Tables •

Table No.	Contents	Page
Table 1	The summary of the classifications of the liver	8
Table 2	IHPBA <i>Brisbane</i> 2000 Terminology of liver anatomy & resections	9
Table 3	Michel's classification of hepatic arterial anomalies	14
Table 4	Risk factors of cholangiocarcinoma	31
Table 5	Clinical Presentation / Presenting symptoms of CCA	40
Table 6	Clinically suspicious scenarios	40
Table 7	Recently proposed serum and bile biomarkers for diagnosis of CCA	42
Table 8	Biliary and serum level of IGF-1	42
Table 9	Proposed serum and bile biomarkers for diagnosis of CCA	43
Table 10	Imaging methods for diagnosis of CCA	49
Table 11	AJCC's (TNM) staging system of iCCA	53
Table 12	Imaging findings of CCA according to morphologic types	54
Table 13	Bismuth and Corlette classification of hilar CCA	57
Table 14	TNM classification for extrahepatic bile duct tumors	57
Table 15	The MSKCC classification system	58
<i>Table 16</i>	Newly proposed classification system	59
Table 17	The AJCC's Staging of dCCA	63
Table 18	Criteria for unresectability	81

Review of the literature