Critical illness induced acute left ventricular myocardial dysfunction

(Stress Related Cardiomyopathy)

Essay

Submitted for partial fulfillment for Master Degree in Intensive Care

By

MIKHAIL ATTIA MIKHAIL

M B B Ch

Faculty of Medicine, Ain Shams University

Under Supervision of

Omar Mohamed T. El Safty, MD

Professor of anesthesia and intensive care medicine,

AinShams University

Karim Youssef Kamal Hakim, MD

Assistant Professor of anesthesia and intensive care medicine

AinShams University

Faculty of Medicine

AinShams University

2015

ACKNOWLEDGEMENT

THANKS ARE GIVEN TO OUR **GOD** THE SOURCE OF ALL KNOWLEDGE AND POWER, THE GREATEST SUPPORT EVER FOUND....

ALL WORDS CANNOT DESCRIBE THE ROLE OF **PROFESSOR DR. OMAR M. TAHA EL-SAFTY**, PROFESSOR OF ANESTHESIA AND CRITICAL CARE, FACULTY OF MEDICINE, AIN SHAMS UNI., WHO SUPPORT ME ALLOVER THE WORK.... IT WAS A GREAT HONOR AND JOY TO BE A STUDENT TO SUCH PROFESSOR.

AND I CANNOT GIVE HIS THANKS DESERVEDLY ASSISTANT PROFESSOR DR. KARIM YOUSEF KAMAL, ASSISTANT PROFESSOR OF ANESETHESIA AND CRITICAL CARE, FACULTY OF MEDICINE, AIN SHAMS UNI., WHO PROVIDE WHOLE THE HELPFUL IDEAS; DISCUSSING EVERY TOPIC IN THE WORK IN A PROFESSIONAL BUT A FRIENDLY WAY WHO WAS A GREAT SUPERVISOR, HE WAS READY TO MAKE ANYTHING AT ANYTIME JUST TO HELP ME AND TO GET OUT A PERFECT WORK.... ALL MY GREETING AND APPRECIATION TO HIM.

ALSO IT IS MY PROUD PRIVILEGE TO RELEASE THE FEELINGS OF MY GRATITUDE TO SEVERAL PERSONS WHO HELPED ME DIRECTLY OR INDIRECTLY TO CONDUCT THIS PROJECT ARTICLE. I EXPRESS MY HEART FULL INDEBTENESS AND OWE A DEEP SENSE OF GRATITUDE TO MY PARENTS, MY AFAF AND MY LITTLE SARAH, WHO INSPIRE ME TO BE THAT PHYSICIAN.... I AM ASKING MY GREAT KIND GOD TO KEEP THEM ALWAYES HAPPY, JOYFUL, HEALTHY AND HAVING AN EFFECTIVE LIFE.

I ALSO THANK ALL MY FRIENDS WHO HAVE MORE OR LESS CONTRIBTED TO THE PREPARATION OF THIS ARTICLE. I WILL ALWAYS INDEBTED TO THEM.

LASTLY I HAVE TO THANK ALL PATIENTS WHO TEACH ME A SPECIAL VIEW OF LIFE THAT WITHOUT, I WOULD NOT EVER LEARN.

I HAVE TO DEDICATE MY WORK TO EVERY ONE OF THEM, AS IT WAS NOT REALLY MY WORK, IT WAS CUMULATIVE WORK FOR ALL THOSE PEOPLE.

CONTENTS

Acknowledgement	I
List of Tables	II
List of Figure	III
List of Abbreviations	IV
Introduction	1
Review of literature	
Chapter 1: Anatomical and physiological review of cardiovascular system.	3
 Anatomical review of cardiovascular system: 	4
 Structure of the cardiac myocyte. 	4 6 9
 Cardiac muscle physiological review: 	10
Action Potential (AP).Mechanism of Excitation and Contraction	n 10 10
 Autonomic Nervous System and Heart 	16

Chapter 2: Pathophy	rsiological review of Stress Related	d	
Cardiomyopathy.		18	
Cardiomyopathy:		19	
 Definiti 	on and Classifications	19	
Stress related cardiomyopathy (SRC)		24	
• Acute c	oronary syndrome	26	
• Brain-h	eart connection	27	
 Definiti 	on and epidemiology	29	
 Classification 	cation	30	
 Pathoge 	enesis	32	
 Transie 	Transient Left Ventricular Dysfunction After		
Acute E	motional or Physical Stress (Tako	tsubo	
Cardior	nyopathy).	46	
• LV Dyst	function Associated With Intracra	nial	
-	hage (esp. SAH), Ischemic Stroke,		
Head T		52	
	function in Pheochromocytoma ar		
•	Exogenous Catecholamine Administration.		
Laugen	ous cateenoramme nummistration	56	
• Trancia	ent LV Dysfunction in Acute Medic		
	•		
lliness	(critical illness):	58	
	 Tachycardia induced 	- 0	
	cardiomyopathy	59	
1	 Hypertensive LV dysfunction 	59	
J	Sepsis and septic shock	60	
ı	 Postcardiac arrest myocardial 		
	dysfunction	73	

 Clinical presentation: 	76
Presenting symptoms and sings	76
Complications	76
 Differential diagnosis 	77
Investigations:	78
 Electrocardiogram 	78
 Laboratory Biomarkers 	78
Imaging modalities	80
Chapter 4: Management of Stress Related Cardiomyo	opathy.
	89
 Treatment 	90
1. General therapy	90
2. Hypotension and shock	90
Without LVOT	91
With LVOT	91
3. Thromboembolism	92
 Prognosis 	93
Summary	97
References	100
Arabic Summery	120

LIST OF ABBREVIATIONS

ACS: ACUTE CRONARY SYNDROME

AHA: AMIRICAN HEART ASSOCIATION

ALVD: ACUTE LEFT VENTRICULAR DYSFUNCTION

AMI: ANTERIOR MYOCARDIAL INFARCTION

AP: ACTION POTENTIAL

AR: ADRENERGIC RECEPTOR

ARVC: ARRHYTHMOGENIC RIGHT VENTRICULAR

CARDIOMYOPATHY

ATP: ADINOSINETRIPHOSPHATE

AV: ATRIOVENTRICULAR

BNP: BRAIN NATRIURETIC PEPTIDE

cAMP: cyclic adenosine monophosphate

CMR: CARDIAC MAGNETIC RESONANCE

CNS: CENTRAL NERVOUS SYSTEM

CPVT: CATECHOLAMINERGIC POLYMORPHIC VENTRICULAR

TACHYCARDIA

CRP: C REACTIVE PROTIEN

CVA: CARDIO VASCULAR SYSTEM

DCM: DILATED CARDIOMYOPATHY

ECG: ELECTROCARDIOGRAM

ENOS: ENDOTHELIAL NITRIC OXIDE SYNTHASE

EPI: EPINEPHRINE

ESCL EUROPIAN SOCIATY OF CARDIOLOGY

FDG-PET: FLUORODEOXYGLUCOSE POSITRON EMISSION

TOMOGRAPHY

GIT: GASTROINTESTINAL TRACT

HCM: HYPERTROPHIC CARDIOMYOPATHY

IABP: Intraaortic balloon counterpulsation

ICH: INTRACRANIAL HAEMORRHAGE

ICU: INTENSIVE CARE UNIT

IDDM: INSULIN DEPENDENT DIABETIS

IL: INTERLEUKIN

ISFC: THE INTERNATIONAL SOCIETY AND FEDERATION OF

CARDIOLOGY

LAD: LEFT ANTERIOR DESCENDING ARTERY

LBB: LEFT BUNDLE BRANCH

LEG: LATE GADOLINIUM ENHANCEMENT

LQTS: LONG QT SYNDROME

LV: LEFT VENTRICLE

LVEF: LEFT VENTRICLE EJECTION FRACTION

LVNC: LEFT VENTRICULAR NON-COMPACTION

LVOT: LEFT VENTICULAR OUT FLOW

MI: MYOCARDIAL INFARCTION

NE: NOREPINEPHRINE

NO: NITRIC OXIDE

NOS: NITRIC OXIDE SYNTHASE

NSC: NEUROGENIC STRESS CARDIOMYOPATHY

ONOO-: PEROXYNITRITE

PCI: PERCUTANEOUS CORONARY INTERVENTION

RBB: RIGHT BUNDLE BRANCH

RCM: RESTRICTIVE CARDIOMYOPATHY

SA: SINOATRIAL

SAH: SUBARACHINOID HAEMORRHAGE

SAM: SYSTOLIC ANTERIOR MOTION

SPET: SINGLE-PHOTON EMISSION TOMOGRAPHY

SQTS: SHORT QT SYNDROME

SRC: STRESS RELATED CARDIOMYOPATHY

STEMI: ST ELEVATION MYOCARDIAL INFARCTION

SUNDS: SUDDEN UNEXPLAINED NOCTURNAL DEATH

SYNDROME

TC: TAKOTSUBO CARDIOMYOPATHY

TCM: TAKOTSUBO CARDIOMYOPATHY

TIMI: THROMBOLYSIS IN MYOCARDIAL INFARCTION

TTC: TACOTSUBO CARDIOMYOPATHY

TTP: THROMBOTIC THROMBOCYTOPENIC PURPERA

TUNEL: TERMINAL DEOXYNUCLEOTIDYL TRANSFERASE-

MEDIATED NICK END-LABELING

UCP: UNCOUPLING PROTEINS

WHO: WORLD HEALTH ORGANIZATION

LIST OF FIGURES

Fig. n.	Title	Page n.
1	The anatomy of cardiac chambers	
2	The circulatory loop	
3	Cardiac valves anatomy	
4	Cardiac sarcomere	
5	The conductive system of the heart	
6	Cardiomyocyte action potential	
7	Cardiac pace maker cell action potential	
8	Excitation contraction coupling	
9	Excitation-contraction coupling and sarcomere	
	shortening.	
10	Classification model for Primary cardiomyopathies	
11	Summery of proposed classification according to ECS	
12	Proposed mechanism of SRC	
13	Schematic representation of the regional differences	
	in response to high catecholamine levels, explaining	
	stress cardiomyopathy	
14	The pathomechanistic concept of SRC	
15	Representative ventriculogram taken from the study	
	of a patient with transient apical ballooning	
16	Proposed mechanism of myocardial stunning in TCM	
17	Schematic showing various ventriculographic	
	morphologies in patients with SRC	
18	Schematic demonstrating proposed mechanisms	
4.0	responsible for neurocardiogenic injury	
19	Mitochondrial dysfunction as a proposed mechanism	
0.0	in sepsis induced cardiomyopathy	
20	Adrenergic signaling	
21	Calcium trafficking	
22	Proposed mechanisms underlying structural changes	
22	of the heart during sepsis	
23	Schematic showing ECG, Echo. And angiography of	
2.4	SRC	
24 25	Ventriculography of SRC	
25	Algorithm for management of LV dysfunction in the critically ill	
26	Proposed algorithm for the evaluation of patients	
20	with new LV dysfunction in the set- ting of SAH	
	with new by aystunction in the set-ting of SAT	

LIST OF TABLES

Table n	Title	Page n
1	AHA Classification for	21
	cardiomyopathies: primary cardiomyopathy	
2	AHA Classification for	22
	cardiomyopathies Important	
	secondary cardiomyopathies	
3	Causes of Acute Left Ventricular	26
	Dysfunction in the Critical Care Setting	
4	Etiological classification of Stress	32
	Related Cardiomyopathy (SRC)	
5	Morphological LV Variants of Stress	32
	Cardiomyopathy	
6	Stressors Reported to Trigger	33
	Cardiomyopathy	

INTRODUCTION

Acute left ventricular (LV) dysfunction is common in the critical care setting and more frequently affects the elderly and patients with comorbidities. Because of increased mortality and the potential for significant improvement with early revascularization, the practitioner must first consider acute coronary syndrome. However, variants of stress cardiomyopathy may be more prevalent in ICU settings than previously recognized.

Early diagnosis is important to direct treatment of complications of stress cardiomyopathy, such as dynamic LV outflow tract obstruction, heart failure, and arrhythmias. Global LV dysfunction occurs in the critically ill because of the cardio-depressant effect of inflammatory mediators and endotoxins in septic shock as well as direct catecholamine toxicity. Tachycardia, hypertension, and severe metabolic abnormalities can independently cause global LV dysfunction, which typically improves with addressing the precipitating factor. (Chockalingam, 2010)

Routine troponin testing may help early detection of cardiac injury and biomarkers could have prognostic value independent of prior cardiac disease. Echocardiography is ideally suited to quantify LV dysfunction and determine its most likely cause. LV dysfunction suggests a worse prognosis, but with appropriate therapy outcomes can be optimized. (Samuels, et al. 2007)

Neurocardiology has many dimensions, namely divided in three categories: the heart's effects on the brain (i.e., embolic stroke); the brain's effects on the heart (i.e., neurogenic heart disease); and neurocardiac syndromes, such as Friedreich disease. The present review will focus on the nervous system's capacity to injure the heart. The relationship between the brain and the heart, i.e., the brain-heart connection, is central to maintain normal cardiovascular function. This relationship concerns the central and autonomic nervous systems, and their impairment can adversely affect cardiovascular system and induce stress-related cardiomyopathy (SRC). Even if it is unclear whether myocardial adrenergic stimulation is the only pathophysiological

1

mechanism associated with SRC, enhanced sympathetic tone inducing endogenous catecholamine's stimulation of the myocardium was always reported. (Samuels, et al. 2007)

The first description of suspected SRC was reported by W.B. Cannon in 1942 cited by Engel et al. who published a paper entitled "Voodoo death," which reported anecdotal experiences of death from fright. This author postulated that death can be caused by an intense action of the sympathico-adrenal system. In 1971, Engel et al. collected more than 100 accounts from the lay press of sudden death attributed to stress associated with disruptive life events and provided a window into the world of neurovisceral disease (i.e., psychosomatic illness). It is now widely admitted that this autonomic storm, which results from a life-threatening stressor, can be observed in the four following situations that induce left ventricle (LV) dysfunction:

- Takotsubo cardiomyopathy or apical ballooning syndrome.
- Acute LV dysfunction associated with subarachnoid haemorrhage.
- Acute LV dysfunction associated with pheochromocytoma and exogenous catecholamine.
- Acute LV dysfunction in the critically ill patients (severe sepsis, post cardiac resuscitation, post tachycardia...). (Bybee, 2004, Prasad, 2008)

Cardiac toxicity was mediated more by catecholamines released directly into the heart via neural connection than by those reaching the heart via the bloodstream. The mechanisms underlying the association between this generalized autonomic storm secondary to a life-threatening stress and myocardial toxicity are widely discussed. Takotsubo cardiomyopathy has been reported all over the world and has been acknowledged by the American Heart Association as a form of reversible cardiomyopathy. (Kim, 2010)

Chapter 1

Anatomical and physiological review of cardiovascular system

- Anatomical review of cardiovascular system:
 - · The Heart and Circulation.
 - Structure of the cardiac myocyte.
 - · Conductive system of the heart.
- Cardiac muscle physiological review:
 - Conduction System of the Heart (Excitation Sequence).
 - Action Potential (AP).
 - Mechanism of Excitation and Contraction Coupling of Cardiac Myocytes.
- Autonomic Nervous System and Heart