

Radiation Vulcanization of Polymeric Blends Based on Ethylene Propylene Diene Monomer Rubber/ Waste Materials in Presence of Different Additives

Thesis Submitted to

Girls College for Arts, Science & Education Ain Shams University (Cairo)

For
The Degree of Doctor of Philosophy
In Chemistry
(Physical Chemistry)

By RANIA MOUNIR MOHAMED

(B.Sc. 2005) (M.Sc. 2011)

National Center for Radiation Research and Technology, Atomic Energy Authority 2015

"Radiation Vulcanization of Polymeric Blends Based on Ethylene Propylene Diene Monomer Rubber/ Waste Materials in Presence of Different Additives"

Thesis Submitted to: Girls College for Arts, Science and Education
Ain Shams University

In the partial fulfillment for: the Degree of Doctor of Philosophy in Chemistry

Submitted by **RANIA MOUNIR MOHAMED**

Approved
••••••
•••••
.
••••••
7.
•••••
•••••
•

Head of Chemistry Department Prof. Dr.

Date of Examination: / /

Ain Shams University Girls College for Arts, Science and Education Chemistry Department

QUALIFICATION

Student Name : Rania Mounir Mohamed

Scientific Degree: Ph.D.

Department : Chemistry Department

Name of Faculty : Girls College for Arts, Science

And Education

University : Ain Shams University

B.Sc. Graduation Date: May 2005

M.Sc. Graduation Date: July 2011

<u>ACKNOWLEDGEMENT</u>

I am deeply thankful to **Allah**, by the grace of whom the progress and success of this work was possible.

I am especially thankful and grateful to **Prof. Dr. Abo El Khair B. Moustafa**, Prof. of Physical Chemistry, Girls College for Arts, Science & Education, Ain Shams University, for his capable supervision and encouragement.

My deep appreciation goes to **Prof. Dr. Ahmed A. El Miligy**, professor of Radiation Chemistry, National Center for Radiation Research and Technology for his constant help and guidance throughout the course of this work. Continuous supervision that made this work possible.

Deepest gratitude is owed to **Prof Dr. Magda M. Abou Zeid, Professor** of Radiation Chemistry, and National Center for Radiation Research and Technology, for her useful comments and continuous help during the research.

Thanks are also due to **Prof Dr. Nawal A. Shaltout**, Radiation Chemistry, and National Center for Radiation Research and Technology, for suggesting the topic of this work, her sincere guidance, encouragement and continuous supervision that made this work possible.

Thanks are also due to **Ass. Prof Dr. Maysa A. Mohamed,** National Center for Radiation Research and Technology, for her useful comments and continuous help during the research.

I would like also to place on record my great appreciation to all my colleagues who helped me throughout this work.

Acknowledgement is due to National Center for Radiation Research and Technology for offering facilities and support to carrying out this research work.

AIM OF THE WORK

Blending of polymeric materials has proved to be a successful method for preparing new polymeric materials having not only the main properties of the blend components but also new modification as well as specific ones. Hence, the blending technique becomes a desirable one and of commercial interest. Rubbers as polymeric materials are usually solid and therefore the method of mechanical blending has been found to be the most suitable one for preparing blends of rubbers.

Recycling of waste materials (Rice Husk and Ground Tire Rubber) as technique for solving their environmental pollution and using them in various industrial applications, has shown to be an appreciable one.

Ionizing radiation offers possibilities for the process of recycling waste polymers, due to its ability to cause cross-linking and or scission to a wide range of polymeric materials.

This work aims at studying the effect of gamma radiation on polymeric blends based on ethylene propylene diene monomer (EPDM) rubber to produce stable polymeric blends. These blends (EPDM/NBR) are filled at first with waste materials such as rice husk (RH) or ground tire rubber (GTR) as an additive. Different properties of prepared filled blends are mechanical, followed specifically, physical, up, thermal morphological ones. Improvement of these properties is then aimed by adding together materials of different functional characters such as maleic anhydride (MAH)as a compatibilizer ,HAF-carbon black or Hisil as a reinforcing filler and N,N- methylene diacrylamide (MDA) as enhancing polyfunctional monomer.

ABSTRACT

In this investigation, the mechanical blending technique was applied for preparation of elastomeric blend of ethylene propylene diene monomer rubber (EPDM)and nitrile butadiene rubber (NBR) having a fixed ratio of (50/50) by weight. The prepared blend of EPDM/NBR (50/50) was used as a rubber matrix to be loaded with waste materials, namely rice husk (RH) as a natural waste filler and then with ground tire rubber (GTR) as an artificial one. The degree of loading varied from 5phr to 20 phr. Ionizing radiation, namely ,gamma rays were applied for inducing vulcanization of prepared and loaded rubber blends, in the range from 5 kGy to 250 kGy. Different properties of prepared composites were followed up as a function of degree of loading with the waste material and dose of irradiation.

The mechanical properties, namely tensile strength and elongation at break percent of the composites slightly decreased as the filler loading increased over the whole range of irradiation .Tensile modulus and hardness, on the other hand, showed an opposite trend, i.e. the increased. Other properties, namely physical, thermal and morphological confirmed the mechanical ones. Obtained results were affiliated with lack of interface adhesion between the waste materials and the rubber matrix elastomers.

The lack of interface adhesion was improved by filling the composite with a limited content, up to 7 phr, of the compatibilizer, namely, maleic anhydride (MAH). Measurements of different properties was carried out for composite loaded with 10 phr of waste material.

It has been found that the tensile properties were significantly improved with addition of the compatibilizing agent.

Further and significant improvement was attained in properties of prepared later composite by its loading with 40 phr of either HAF-carbon black or Hisil as reinforcing fillers that participates in chemical as well as physical bonding.

Similarly and lastly 8 phr of N, N- methylene diacrylamide (MDA) were loaded as an enhancing polyfunctional monomer, i.e. co-agent Properties obtained showed further improvement due to its participation in gel formation.

CONTENTS

		page
	CHAPTER I	
	INTRODUCTION	
1.1.	Classification of polymer blends	2
1.1.1.	Elastomer-elastomer blends	2
1.1.2.	Elastomer –thermoplastic blends	3
1.1.3.	Thermoplastic –thermoplastic blends	4
1.2.	Effect of radiations on polymeric materials	5
1.2.1.	Sources of radiation	5
1.2.2.	Chemical changes of irradiated polymers	6
1.2.3.	Cross -linking and degradation	7
1.2.4.	Mechanism of radiation reaction	9
1.3.	Vulcanization	11
1.3.1.	Radiation vulcanization of rubber	12
1.3.2.	Other vulcanization methods	13
1.4.	Rubber blends vulcanization in	16
	presence of additives	
1.4.1.	Fillers	16
1.4.2.	Promoters (co -agents)	19
1.5.	Properties of EPDM and NBR	20
1.5.1.	Ethylene propylene diene monomer (EPDM)	20
1.5.2.	Nitrile butadiene rubber (NBR)	20
1.6.	Rubber blending	21
1.7.	Radiation curing of EPDM/NBR blends.	22
1.8.	Rice Husk as natural waste fiber	22

1.8.1.	Chemical constituent, structure and	22
	properties of raw Rice Husks(RH)	
1.8.2.	Adhesion behavior between elastomers and RH components:	26
1.9.	Polymeric waste	28
1.9.1.	Waste rubber as landfills	29
1.9.2.	Recycled of waste rubber	29
1.10.	Applications of recycled/reclaimed rubbers	30
1.11.	Effect of gamma radiation on waste rubber	30
1.12.	Adhesion behavior between elastomers and	31
	GTR components:	
	CHAPTER II	
	LITERATURE REVI EW	
2.1.	Classification of polymer blends:	34
2.1.1.	Elastomer /elastomer compound	34
2.1.2.	Elastomer /thermoplastic compound	35
2.1.3.	Thermoplastic-thermoplastic compounds	37
2.2.	Blending of Rice husk with virgin polymer	38
2.3.	Effect of addition of compatibilizing agents on	40
	elastomer/rice husk (RH) composites	
2. 4.	Effect of filler on elastomer /rice husk (RH)	45
	composites	
2.5.	Effect of polyfunctional monomer on	48
	elastomer/ rice husk (RH) composite	
2.6.	Blending of waste rubber with virgin	48
	polymer:	
2.7.	Effect of addition of compatibilizing agents on	53
	waste rubber blending with virgin polymer:	
2. 8.	Effect of filler on elastomers /GTR composites	57

2.9.	Effect	of	polyfunctional	monomer	on	59
	elastom	er/ w	ith GTR composi	te		

CHAPTER III EXPERIMENTAL

3.1.	Materials	60
3.1.1.	Raw rubber	60
3.1.2.	Waste materials	61
3.1.3.	Additives	62
3.2.	Techniques	64
3.2.1.	Preparation of samples	64
3.2.2.	Irradiation procedure	65
3.3.	Measurements	66
3.3.1.	Mechanical measurements	66
3.3.1.1.	Tensile strength (TS)	66
3.3.1.2.	Tensile modulus at 100 %(M 100%)	66
3.3.1.3.	Elongation at break %(E _b %)	67
3.3.1.4	Hardness	67
3.3.2.	Physical Measurements	67
3.3.2.1.	Detremination of gel fraction	67
3.3.2.	Detremination of swelling number	68
3.3.2.3.	Water absorption %	68
3.3.2.	Determining of cross-linking density	69
	by the Charlesby- Pinner equation	
3.3.3.	Thermal measurement	70
3.3.4.	Structure morphology by SEM	70

CHAPTER IV RESULTS AND DISCUSSIONS PART ONE

	properties of EPDM/NBR (50/50) blend and its composites with different concentrations of rice husk (RH):	/1
4.1.1.1.	Mechanical properties	73
4.1.1.2.	Physical measurements	83
4.1.1.3.	Structure morphology by SEM	94
4.1.1.4.	Thermal measurement	96
	Section2: Effect of gamma irradiation on the properties of EPDM/NBR (50/50) and filled with 10phr of RH and loaded with different concentrations of Maleic Anhydride (MAH):	108
4.1.2.1.	Mechanical properties	109
4.1.2.2.	Physical Measurements	121
4.1.2.3.	Structure morphology by SEM	132
4124	Thermal measurement	134

	Section3: Effect of gamma irradiation on the properties of EPDM/NBR (50/50) filled with 10phr of RH loaded with 7phr of MAH and loaded with constant concentration (40phr) of Different filler: (HAF-carbon black (N330) and Hisil):	141
4.1.3.1.	Mechanical properties	142
4.1.3.2.	Physical Measurements	154
4.1.3.3.	Structure morphology by SEM	164
	Section4: Radiation vulcanization of EPDM/NBR (50/50) blend filled with10phr of RH, loaded with 7phr of MAH, reinforced with 40 phr HAF carbon black and enhanced with 8 phr of MDA as polyfunctional monomer:	167
4.1.4.1.	Mechanical properties	168
4.1.4.2.	Physical measurements	177
4.1.4.3.	Structure morphology by SEM	186

PART TWO

	vulcanization of EPDM/NBR (50/50) blend and its composites with different concentrations of ground tire rubber (GTR):	188
4.2.1.1.	Mechanical properties	189
4.2.1.2.	Physical measurements	198
4.2.13.	Structure morphology by SEM	205
4.2.1.4	Thermal measurement	207
	Section2: Effect of gamma irradiation on the properties of EPDM/NBR (50/50) blend and its composites with 10phr of GTR (ground tire rubber) and different concentrations of maleic anhydride (MAH)):	218
4.2.2.1.	Mechanical properties	219
4.2.2.2.	Physical measurements	230
4.2.2.3.	Structure morphology by SEM	237
4.2.2.4.	Thermal measurement	239
	Section 3:Effect of gamma irradiation on the properties of EPDM/NBR (50/50) blend filled with 10phr of GTR, loaded with 7phr of MAH and loaded with constant concentration (40phr) of different fillers(HAF-carbon black N330 and Hisil):	245
4.2.3.1	Mechanical properties	245
4.2.3.2	Physical measurements	256
	•	

4.2.3.3	Structure morphology by SEM		
	Section 4: Radiation vulcanization of EPDM/NBR (50/50) blend filled with10phr of GTR, loaded with 7phr of MAH reinforced with 40 phr HAF- carbon black and enhanced with 8phr of MDA as a function of polyfunctional monomer:	265	
4.2.4.1	Mechanical properties	266	
4.2.4.2	Physical measurements	274	
4.2.4.3	Structure morphology by SEM	279	
	SUMMARY AND CONCLUSION	281	
	REFERENCES	292	

T	IST	\mathbf{OF}	TA	RI	FC
	4151	()r	1 /	DI.	7 F/17

Page

- **Table(1):** the values of (p_0/q_0) and $(1/q_0U)$ of 93 EPDM/NBR (50/50) blend and its composites with different concentrations of RH
- **Table(2):** Weight loss % at different decomposition 103 temperature for EPDM/NBR (50/50) blend and its composition with different concentrations of Rice Husk for unirradiated and irradiation dose at 150 kGy respectively.
- **Table(3):** The temperature for different percentage of 107 weight losses of EPDM/NBR (50/50) loaded with 10 phr of RH composites at different irradiation dose up to 250kGy.
- **Table(4):** The values of (p_0/q_0) and $((1/q_0U)$ of 131 composites filled 10 phr RH, and later composite loaded with different concentrations of MAH
- **Table(5):** Corresponding decomposition temperatures for 137 different weight losses% of EPDM/NBR (50/50) blend filled with 10 phr RH as well as its composition loaded with 7 phr of maleic anhydride for unirradiated composites.