

#### "Impact of The Digital Simulation And the Dynamic References On The Form Methodology"

A Thesis submitted to the faculty of Fine Arts in partial fulfillment to the requirements of the

Doctoral degree of Science in Architecture.

#### Supervised by:

**Prof. Dr/ Mohsen Abu Bakr Bayad**Faculty of Fine Arts, Alexandria University, Egypt

**Prof. Dr/ Hoda Abdelukader Azzam**Faculty of Fine Arts, Alexandria University, Egypt

**Prof. Dr/ Dennis Jones**School of Architecture, Virginia Tech, USA

#### Submitted by:

Ibrahim Abdel. Hady Ibrahim
Msc., Faculty of Fine Arts, Alexandria University

2008

# بسمرالله البرمن العلم إلا قليلا"

صدق السالعظيمر

## **Acknowledgement**

I must firstly express my gratitude to the soul of my dad, my mom, for their continued support and patience

The deep appreciation goes to my wife, who did her best to support me since we have met together

My sincere thanks goes to my supervisors,
Professor Dr. Mohsen Abu Bakr Bayad
for his generous and continuous guidance and support since my master and
finally in the PhD,

I am especially grateful to Professor Dr. Hoda Azzam

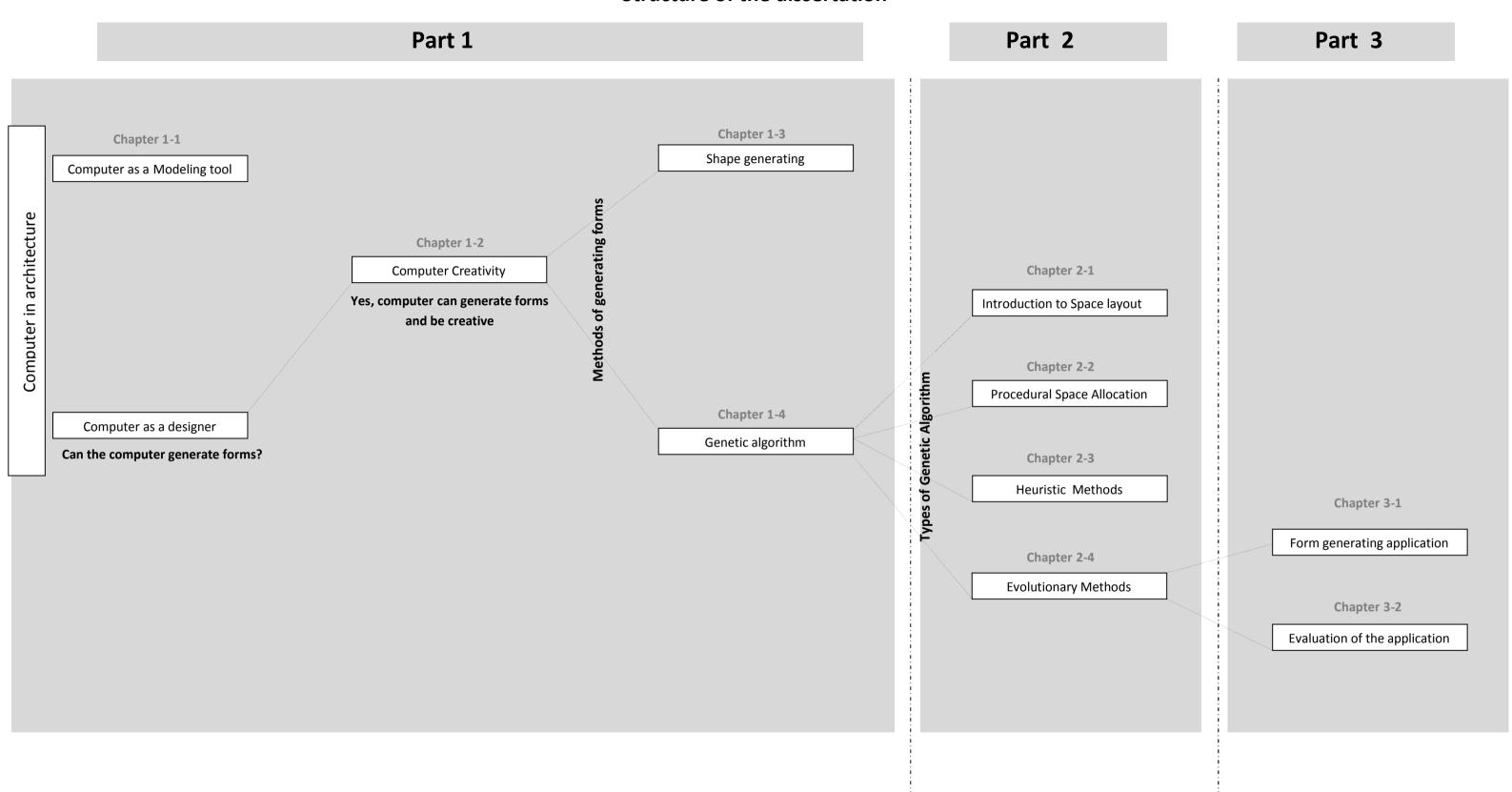
for her useful comments given while conducting the research, she was kind enough to read all the material while in preparation, and to make a broad number of valuable comments.

Also record my appreciation for the help given to me by Professor Dr. Dennis Jones who played a key role in conducting and supporting this research

Last but never least I express my full gratitude and thanks to
Arch; Ebtissam Mohammed Farid
For her efforts which exceeded all the limits to facilitate the presentation of this thesis while I was outside the country

## The Researcher

| Index                                                                         |      |
|-------------------------------------------------------------------------------|------|
|                                                                               |      |
| Acknowledgement                                                               | IV   |
| Index                                                                         | VI   |
| Index of figures                                                              | XI   |
| Index of tabels                                                               | XII  |
| Dissertation structure                                                        | XIII |
| Introduction                                                                  | 1    |
| Part 1                                                                        |      |
|                                                                               |      |
| Chapter 1-1 Digital Architecture Categorization                               | 3    |
|                                                                               |      |
| 1.1.1. Introduction                                                           | 4    |
| 1.1.2. Definition of the Digital Architecture                                 | 5    |
| 1.1.3. Categorization                                                         | 5    |
| 1.1.4. First Categorization; Kipness J. hypothesis                            | 5    |
| 1.1.4.1. Architectural (De-formation)                                         | 5    |
| 1.1.4.1.A; Model space                                                        | 6    |
| 1.1.4.1.B; Animate form                                                       | 7    |
| 1.1.4.1.C; Architecture of incomplete                                         | 7    |
| 1.1.4.1.D; Liquid architecture                                                | 8    |
| 1.1.4.2 Architectural (In-formation                                           | 9    |
| 1.1.4.2.A; Liquid architecture, transarchitecture                             | 9    |
| 1.1.4.2.B; Architecture of the image                                          | 9    |
| 1.1.5. Second Categorization; Kolarevic, B. hypothesis                        | 10   |
| 1.1.5.A; Topological Architecture                                             | 10   |
| 1.1.5.B; Isomorphic Architecture                                              | 11   |
| 1.1.5.C; Animation Architecture                                               | 12   |
| 1.1.5.D; Metamorphic Architecture                                             | 12   |
| 1.1.5.E; Evolutionary Architecture                                            | 12   |
| 1.1.5.F; Parametric Architecture                                              | 13   |
| 1.1.6.Digital Architecture Argument                                           | 14   |
| 1.1.7. Conclusion.                                                            | 14   |
|                                                                               |      |
| Chapter 1-2 Artificial Creativity In the field of Architecture                | 16   |
| d Od Jahanda Aliana                                                           | 17   |
| 1.2.1. Introduction:                                                          | 17   |
| 1.2.2. Definition Of Natural Creative Process                                 |      |
| 1.2.1. Gero's Definition Of The Creativity                                    | 19   |
| 1.2.2. Indurkhya's Definition Of Creativity                                   | 20   |
| 1.2.3. Models of Creativity; Liu's Dual Generate-and-Test Model of Creativity | 21   |
| 1.2.4. Machine Consciousness Arguments                                        | 23   |
| 1.2.5. Principals of Artificial Creativity                                    | 24   |
| 1.2.6. Definition Of Artificial Creative System                               | 24   |
| 1.2.7. Artificial Creativity Requirements and Potentials                      | 25   |
| 1.2.8. Applications Of Creative Artificial Systems                            | 25   |


| 1.2.9. Conclusion                                                 | 27       |
|-------------------------------------------------------------------|----------|
| Chapter 1.0 Chapa Orompor in Architecture                         | 28       |
| Chapter 1-3 Shape Grammar in Architecture                         |          |
| 1.3.1. Introduction                                               |          |
| 1.3.2. Architectural Device to Create Building Form               | 29       |
| 1.3.3. Goal Of The Generative Systems:                            | 30       |
| 1.3.4. Definition of the Shape Grammar                            | 30       |
| 1.3.5. Types Of The Shape Grammar:                                | 30       |
| 1.3.5.1. Standard shape grammar: (non-parametric)                 | 31       |
| 1.3.5.2. Parametric Shape Grammar                                 | 31       |
| 1.3.6. Creating And Developing The Shape Grammar Model            | 32       |
| 1.3.6.1. Creating and modifying the grammar                       | 33       |
| 1.3.6.2. Creating the Elements of the Shape Grammar:              | 33       |
| 1.3.6.3. Creating the Initial Shape:                              | 33       |
| 1.3.6.4. Creating the Rule:                                       | 33       |
| 1.3.6.5. Compiling A Rule                                         | 33       |
| 1.3.6.6. Exploring the grammar                                    | 34       |
| 1.3.6.7. Changing the Substitution                                | 34       |
| 1.3.6.8. Turning the Shape Grammar into 3D forms                  | 35       |
| 1.3.7. Applications Of The Shape Grammar. Shape Grammar and Art:  | 35       |
| 1.3.8.Shape Grammar and Architectural symbols;                    | 36       |
| 1.3.8.1.Stiny's Ice-ray grammar; Chinese window design            | 37       |
| 1.3.8.2.The Wall Architecture                                     | 37       |
| 1.3.9.Shape Grammar and Architecture:                             | 38       |
| 1.3.9.1. Andrea Palladio Villas Desgin                            | 39       |
| 1.3.9.2. Frank Lloyd Wright's prairie house                       | 41       |
| 1.3.10. Shape Grammars Applications                               | 42       |
| 1.3.10.1. Shape Grammar Interpreters                              | 42       |
| 1.3.10.2. Shaper 2D software                                      | 43       |
| 1.3.10.3. 3D Shaper software                                      | 44       |
| 1.3.11. Conclusion                                                | 45       |
|                                                                   |          |
| Chapter 1-4 Genetic Algorithms in Architecture                    | 46       |
|                                                                   |          |
| 1.4.1 Introduction:                                               | 47       |
| 1.4.2. Definition of Genetic Algorithm                            | 47       |
| 1.4.3. Difference between Shape Grammar and Genetic Algorithm     | 48       |
| 1.4.3. Nature as the mother hood of the Genetic Algorithm GAs     | 49       |
| 1.4.4. Evolution of the Genetic Algorithm GAs                     | 50       |
| 1.4.5. Methods of the Genetic Algorithm modeling                  | 51       |
| 1.4.5.1. Natural Algorithm Method                                 | 51<br>52 |
| 1.4.5.2. Genetic Engineering Method                               | <u>.</u> |
| 1.4.6. Interactive Genetic Algorithms modeling "The optimization" | 53       |
| 1.4.7.1 Concept of Congreting                                     | 53       |
| 1.4.7.1.Concept of Generating                                     | 54       |
| 1.4.7.2. Topology optimization and Modification of Objectives     | 56       |

| 1.4.7.3. Sizing optimization and Modification of Constraints        | 56                                      |
|---------------------------------------------------------------------|-----------------------------------------|
| 1.4.8. GAs applications:                                            | 55                                      |
| 1.4.8.1. The logo: The early advance:                               | 56                                      |
| 1.4.8.2. Design by Number (2D):                                     | 57                                      |
| 1.4.8.3. FormWriter (3D):                                           | 58                                      |
| 1.4.9. Genetic Algorithm in industry:                               | 60                                      |
| 1.4.9.1. Genometri applications:                                    | 60                                      |
| 1.4.9.2. GenoPal, Generative Harmony in colors:                     | 61                                      |
| 1.4.10. The Use of Genetic Algorithms Applications in Architecture: | 61                                      |
| 1.4.10.1. Tall Building Form Generation                             | 62                                      |
| 1.4.10.2. Parametric Design of Gothic Window Tracery                | 62                                      |
| 1.4.10.3. Mardin Grammar and housing                                | 64                                      |
| 1.4.11. Criticism of Algorithmic Design                             | 64                                      |
| 1.4.12 Conclusion                                                   | 65                                      |
|                                                                     |                                         |
| Part II The Space Layout Generating                                 | *************************************** |
|                                                                     |                                         |
| Chapter 2-1 Space Layout As an Automated Design Approach            | 68                                      |
|                                                                     |                                         |
| 2.1.1. Introduction                                                 | 69                                      |
| 2.1.2. Concept of the Automated Design:                             | 69                                      |
| 2.1.3 Approaches of the Automated Space Layout Design               | 70                                      |
| 2.1.3.1. Procedural Space Allocation Methods                        | 71                                      |
| 2.1.3.2. Heuristic Methods                                          | 73                                      |
| 2.1.3.3. Evolutionary Methods                                       | 74                                      |
| 2.1.4. Comparison and Results                                       | 74                                      |
| 2.1.5 Conclusion                                                    | 75                                      |
|                                                                     |                                         |
| Chapter 2-2 Procedural Space Allocation                             | 77                                      |
|                                                                     |                                         |
| 2.2.1. Introduction:                                                | 78                                      |
| 2.2.2. Concept of Procedural Space allocation                       | 78                                      |
| 2.2.3. Approaches of the Procedural Space Allocation :              | 79                                      |
| 2.2.3.1. Procedural Methods- Additive Space Allocation              | 79                                      |
| 2.2.3.1.1 Program approached the Additive Space Allocation:         | 80                                      |
| 2.2.3.1.2. History of the program                                   | 81                                      |
| 2.2.3.1.3. Structure of the program                                 | 81                                      |
| 2.2.3.1.4. Arguments of the Additive Space Allocation               | 83                                      |
| 2.2.4. Procedural Methods- Permutational Space Allocation           | 84                                      |
| 2.2.4.1. Program approached Permutational Space Allocation          | 86                                      |
| 2.2.4.1.1 History of the program (ACTLOC 1000)                      | 86                                      |
| 2.2.4.1.2 Structure of the program (ACTLOC, 1992)                   | 87<br>89                                |
| 2.2.4.1.3 Arguments of the Permutational Space Allocation           |                                         |
| 2.2.5. Conclusion                                                   | 89                                      |

| Chapter 2-3 Heuristic Methods                                                                           | 91  |
|---------------------------------------------------------------------------------------------------------|-----|
|                                                                                                         |     |
| 2.3.1. Introduction:                                                                                    | 92  |
| 2.3.2 Concept of the Heuristic Method                                                                   | 92  |
| 2.3.3. History of the program approached the Heuristic method                                           | 93  |
| 2.3.4. Structure of the program and concept of the Heuristic Methods                                    | 93  |
| 2.3.5. Arguments of the Heuristic Methods                                                               | 96  |
| 2.2.5. Conclusion                                                                                       | 97  |
| Observe O. 4. Frankitana a Mathada                                                                      | 99  |
| Chapter 2-4 Evolutionary Methods                                                                        | 99  |
| 2.4.1 Introduction:                                                                                     | 100 |
| 2.4.1. Introduction:                                                                                    | 100 |
| 2.4.2. Background:                                                                                      | 101 |
| 2.4.3. Structure of the program :                                                                       | 102 |
| 2.4.3.1. The first approach: Evolving Complex Design Genes Using a Genetic                              | 102 |
| Engineering Approach:  2.4.3.2. The second approach: Evolving Complex Design Genes Using a Hierarchical | 106 |
|                                                                                                         | 100 |
| Growth Approach 2.4.4. Conclusion                                                                       | 109 |
| 2.4.4. Conclusion                                                                                       | 109 |
| Part III The Space layout Application                                                                   | 110 |
| Fait III The Space layout Application                                                                   | 110 |
| Chapter 3-1 The Application Layout                                                                      | 111 |
| Chapter 3-1 The Application Layout                                                                      |     |
| 3.1.1. Introduction:                                                                                    | 111 |
| 3.1.2. Application concept: 3.1.2. Units :                                                              | 112 |
| 3.1.3. Rooms:                                                                                           | 114 |
| 3.1.4. Boundaries3. 1. 5. Hallways and Accessways:                                                      | 116 |
| 3.1.6. Windows:                                                                                         | 118 |
| 3.1.7. Constraints:                                                                                     | 119 |
| 3.1.8. Variables and application constraints:                                                           | 120 |
| 3.1.8.1. Force Inside Constraint Group                                                                  | 120 |
| 3.1.8.2. Prohibit Intersection Constraint Group                                                         | 121 |
| 3.1.8.3. Force Minimum Intersection Constraint Group                                                    | 124 |
| 3.1.9. Application Evaluation                                                                           | 124 |
| o.i.a. Application Evaluation                                                                           |     |
| Chapter 3-2 The Application Evaluation                                                                  | 126 |
| Onapier 0-2 The Application Evaluation                                                                  |     |
| 3.2.1. Introduction                                                                                     | 127 |
| 3.2.2. Design layout                                                                                    | 127 |
| 3.2.3. Experiments and results                                                                          | 132 |
| 3.2.3.1. Experimental objectives                                                                        | 132 |
| 3.2.3.2. Experimental setup                                                                             | 134 |
| 3.2.3.3. Results                                                                                        | 136 |
| 3.2.4. Conclusion                                                                                       | 142 |
| U.C.T. OUTMUSIUT                                                                                        |     |

| Conclusions And Recommendations         | 143 |
|-----------------------------------------|-----|
| General conclusions                     | 144 |
| Recommendations                         | 146 |
| References                              | 147 |
| English references                      | 148 |
| Summary                                 | 153 |
| English summary                         | 154 |
| Arabic summary                          | 156 |
| Appendix                                | 157 |
| Appendix 1 : The source code of the C++ | 158 |

### Structure of the dissertation



#### Introduction

Every architectural design process starts with the schematic design phase, wherein architects have to satisfy a collection of adjacency constraints among spaces and dimensional constraints over each space element. Here, architects face a complicated problem. Some constraints contradict others; priorities may not be clear and the adjacency constraints grow exponentially as the number of rooms in a design problem increases. In large design problems, optimizing such a problem is a time consuming trial-and-error task that could benefit from computational assistance.

On the other side; the computer by the end of the 20th century and the beginning of the 21st century has a great impact on the architecture, not only as a modeling tool (chapter 1-1) but also as a design tool. The computational design tools for spatial layout planning present perhaps the most comprehensive challenges in the area of architectural design computation. Spatial design tools are the common ground where design representation, generation, evaluation and decision-making are required to be addressed simultaneously for the goal of realizing meaningful design exploration tools. Additionally, a multitude of ill-posed design intentions, non-explicit goals, and the non-deterministic nature of the design process itself add to the problem complexity. Given the difficulties, the problem of architectural layout design continues to challenge researchers from all areas of design computation.

Architectural design process involves a mix of quantifiable and subjective goals, preferences and constraints. Aesthetic preferences and other subjective aspects of designs are typically ignored in automated models because these aspects are difficult to model with mathematics. Designers generally explore subjective aspects during the conceptual design phase by sketching and comparing design alternatives. Very few CAD packages address the needs of designers during this initial conceptual exploratory phase of design.

But this brings us to the question; can the computer be creative? Few CAD packages that satisfy the needs of the designer, then is there any method or software that can help the architect in the process of the design itself? And the answer which will be found in chapter 1-2 is yes.

Researchers have used several problem representations and solution techniques to describe and solve the problem. Among those techniques and methods that have been used in optimization problems, generative algorithm method have shown a potential to produce novel optimized solutions.

In this thesis, genetic algorithm, one of the powerful search methods in artificial intelligence, is used to create an intelligent prototype to be used in early phases of design. This prototype is able to generate alternative schematic designs to help the architects choose a direction for their design, while having a broad perspective about other good possibilities. It's an alternative automated layout method that generates goal-directed design alternatives given a set of design objectives and constraints. It presents a novel interactive design tool that uses optimization to help the designer quickly

generate and compare designs using visual and computational feedback to understand design trade-offs.

To apply this prototype and to discover the ability of the computer to generate forms, a design model of a home has been chosen to apply this method. Because of that the relation between the spaces of the home definitely helps implementing those roles. This relation is clear and can be easily defined for most of the architects, designing of the home and understanding the space relations could be considered the basic and first step for any architect who is going to work in the field of architecture.

Also the home design could be considered one of the more effective projects in which the mass customization can be applied. Here, the programming of computer application that can join between the architectural design and generative algorithm would be more beneficial. This computer application can also help the architects generates a typical model to satisfy the requirements of a broad number of customers, then the model can be transferred from the design phase to the production phase through the different architectural processes.

This thesis is focus on the approaches of the generative design, the programming of this computer application, and how we can make use of the different fields of science to serve our filed of architecture, finally the validation of this computer application will be shown, also the limitation of the software and expectations will be discussed.

## Chapter 1-1 Digital Architecture Categorization

- 1.1.1. Introduction
- 1.1.2. Definition of the Digital Architecture
- 1.1.3. Categorization
- 1.1.4. First Categorization; Kipness J. hypothesis
  - 1.1.4.1. Architectural (De-formation)
    - 1.1.4.A; Model space
    - 1.1.4.B; Animate form
    - 1.1.4.C; Architecture of incomplete
    - 1.1.4.D; Liquid architecture
  - 1.1.4.2.. Architectural (In-formation)
    - 1.1.4.A; Liquid architecture, transarchitecture
    - 1.1.4.B; Architecture of the image
- 1.1.5. Second Categorization; Kolarevic, B. hypothesis
  - 1.1.5.A; Topological Architecture
  - 1.1.5.B; Isomorphic Architecture
  - 1.1.5.C; Animation Architecture
  - 1.1.5.D; Metamorphic Architecture
  - 1.1.5.E; Evolutionary Architecture
  - 1.1.5.F; Parametric Architecture
- 1.1.6. Digital Architecture Argument
- 1.1.7. Conclusion.



#### 1.1.1 Introduction

Currently, the information era is rapidly transforming, and implanting different trends in many fields of life. This Gradual computer implementation into everyday routines has developed many digital technologies. One of these new trends is 3-Dimentional computational concept, which helps calculating many volumetric parameters that are too complex for the human brain to fully envision. This new trend is increasingly influencing the field of architecture.

The computer, then, will no longer be merely a production, engineering or facilitation tool under the command of the architect-user but a generating entity with its own virtual intelligence or "knowledge" of the design process; the computer will function as a partner. Architecture also is becoming a computational collaborative art based on the choreography of robotic manufacturing, while the architect, freed from the need to continuously invent a new, is becoming more like a choreographer of space and material production.

So, Mixing information and data with architecture has been found very contrasting. Most attempts of synthesizing a rational field with a humanistic art were heavily criticized. In spite of this criticism, it is clear that digital technologies have effect on the architectural field as it does to any other.

This chapter compares the different categorizations of these digital approaches, for the architects who fuse the computer's techniques into their working methods in a more efficient or exploratory way, in terms of the design process, as well as on the levels of organization and experience, the architects will be organized into a detailed categorization.

#### 1.1.2 Definition of the Digital Architecture

Due to the digital revolution a new architectural terminology has been developed, such as "Digital Architecture", which is not yet technically accepted. This trend is known as an experimental trend that is seeking new possibilities and methods. While only a very few actual buildings in this genre exist, and several of them are definitely visionary in character. Many designs have been rejected by selection committees or timid clients who fear of the expense, and have thus been relegated to that limbo of "pure" architectural fantasy where unbuilt projects are unjustifiably forgotten. This despite the fact that the field of media architecture provides an opportunity for wide-ranging innovation.

To make it clear and sharp, the term "Digital Architecture" can be defined as an experimental approach which is blending novel "hard" (construction and materiality) and "soft" (digital technologies) to breed an architecture of incorporation and conjunction, creating potential forms which are made possibly through computer programming and application<sup>1</sup>.

Architecture in the beginning of the 21<sup>st</sup> century should be understood as an "electronic technical art." based less in the representation of ideal forms than in the scripting of machining codes and routines for numerically controlled ( CNC <sup>2</sup>, lasers and water jets). Also he suggests that the calculation of space, form and structure will usurp design altogether and eclipse the architect's previously deterministic role.

<sup>&</sup>lt;sup>1</sup> Researcher

<sup>&</sup>lt;sup>2</sup> Computer numerical control (CNC) is a computer "controller" that reads G-code and M-code commands and drives a machine cutting tool, a powered mechanical device typically used to fabricate components by the selective removal of material. CNC numerically interpolates the points along a cutting tool's toolpath and directs the servomechanisms that translate the data into movement.

#### 1.1.3. Categorization of the Digital Architecture approaches:

Many of the digital architectural pioneers tried to categorize the different approaches of this new trend. This study will show these different categorizations. So, two spectrum of these categorized approaches will be presented, for the architects who fuse the computer's techniques into their working methods in a more efficient or exploratory way, the different between the two classification is that Kipness has categorized the digital architecture due to the output product, while Kolarevic has categorized it due to the design conceptual process<sup>1</sup>.

#### 1.1.4. First Categorization; Kipness J. hypothesis<sup>2</sup>

Kipness thought of digital architecture as a global term is divided into two trends<sup>3</sup>; deformation and information. The deformation trend, deals with manipulating and deforming an existing form. This deformation may be a result of the clients needs, architectural philosophies, or natural and mathematical phenomenon. These deformations could be driven according to natural forces allowing it to be suitable for construction.

On the other hand, the information trend is concerned with the open form, or the form that is not stationary and always changing. He called it the "Unfinished Form". Such forms usually are experimental forms that depend on variable changing (such as Para Cube- M.Novak figure 1.1.11). Due to the technological limitations of construction they are hard to build in real life, however they could be used as virtual spaces.

#### 1.1.4.1 Architectural (De-formation)

The characteristics of external forces (tension and deformation) resulting in continuous curvilinear soft systems and transforming existing spatial qualities through smooth affiliations.

Relationships with the site are undetermined and unexpected since they do not emphasize a prevailing architectural language, typology or material. Instead, as Kipness argues, they amplify characteristics hidden in the site and generate a coherent incongruity.

Therefore, this smooth and continuous mixture can produce a homogeneous architectural form that has the essentially soft, and flexibly curved layout. The computational process is a

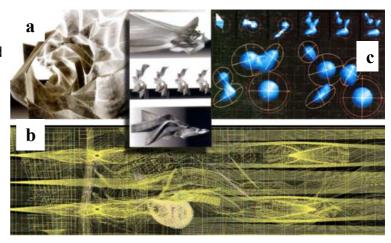



Fig (1.1.1) Deformation forms

- a: model space deformed system, phylux. Karl Chu. 1999
- b: blobs strategy, the concept of New York Presbyterian Church 2000
- c: deformed surface of Kansay Library competition 2000
- Source: Chirstian Pongratz and Rita Perbellini, Maria "Natural Born Caadesigners: Young American Architecture"; Brikhauser, Basel, 2000. P:52

<sup>2</sup> **Kipness hypothesis**: Jeffrey Kipness is an urban designer as well as a curator and critic of architecture. He is currently the curator of Architecture and Design at the Wexner Center for the Arts, and professor of architecture at Ohio State University.

<sup>3</sup> Chirstian Pongratz and Rita Perbellini, Maria "Natural Born Caadesigners: Young American Architecture"; Brikhauser, Basel, 2000. P:52

<sup>&</sup>lt;sup>1</sup> Researcher