DIAGNOSTIC ACCURACY OF TRANS-VAGINAL SONOGRAPHIC MEASUREMENT OF CERVICAL LENGTH TO PREDICT PRETERM DELIVERY

Thesis Submitted in Partial Fulfillment of Doctorate Degree in Obstetrics and Gynecology

BY

Nabil Mahmoud Aly Ashour

MB.B.Ch Ain Shams University (1981) D.G.O, Ain Shams University(1986) M.Sc Ain Shams University(2007)

UNDER SUPERVISION OF

Prof. Hazem Amin El-Zenini

Professor of Obstetrics and Gynecology Ain Shams University

Prof. Ahmed Ramy Mohamed Ramy

Professor of Obstetrics and Gynecology Ain Shams University

Prof. Yasser Mohamed Abou Talib

Professor of Obstetrics and Gynecology Ain Shams University

> FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 2011

قياس طول عنق الرحم عن طريق المهبل كوسيلة للتنبأ بالولادة المبكرة

رسالة مقدمة توطنة للحصول على درجة الدكتوراة في الطب في تخصص النساء والتوليد

مقدمة من

الطبيب / نبيل محمود على عاشور

بكالوريوس الطب والجراحة - جامعة عين شمس (1981) دبلوم التوليد وأمراض النساء -جامعة عين شمس (1986) ماجستير أمراض الناسء والتوليد -جامعة عين شمس (2007)

تحت اشراف الأساتذة

أ. د. حازم أمين الزنيني

أستاذ أمراض النساء والتوليد - كلية الطب - جامعة عين شمس

أ. د. أحمد رامي محمد رامي

أستاذ أمراض النساء والتوليد - كلية الطب - جامعة عين شمس

أ د ياسر محمد أبو طالب

أستاذ أمراض النساء والتوليد -كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2011

Acknowledgement

First and above all my deepest gratitude and thanks to **Allah** for achieving any work in my life.

I wish to express my continuous appreciation and thanks to **Prof. Hazem Amin El-Zenini**, Professor of obstetrics and gynecology. For his generous help and support and his enthusiastic cooperation and supervision from the very beginning of this work and till it saw the light.

I would like to express my especial cordial thanks, endless gratitude and appreciation to *Prof, Ahmed Ramy Mohamed Ramy* Professor of Obstetrics and Gynecology, Faculty of Medicine Ain Sham University for giving me the opportunity to work under his meticulous supervision. His honest assistance and patience make me truly indebted to him.

With great pleasure I am also grateful to **Prof. Yasser Mohamed Abou Talib** Professor of Obstetric and Gynecology Faculty of Medicine Ain Sham University, for his kind effort and support that made achievement of this work possible. He offered me lots of help and encouragement

No words could adequately express my deep appreciation to my family, for their continuous support and guidance. I shall remain indebted to them all my life.

Thanks

الْحَمْدُ شِّهِ الَّذِي هَدَانَا لِهَذَا وَمَا كُنَّا لِنَهْتَدِيَ لَوْلا أَنْ هَدَانَا اللهُ

سورة الأعراف آية (٤٣)

Contents

	Page
- INTRODUCTION	1
- Research Objectives	3
Rationale	3
Aim of the study	4
- REVIEW OF LITERATURE:	
Definition, causes, and complications of Preterm Birth	5
Definition of Preterm Birth	8
Measurement of gestational age	11
Measurement of fetal and infant maturation	20
Causes of Preterm Birth	32
Mortality and Acute Complications in Preterm Infants	42
Predicting and preventing preterm birth	76
Predicting spontaneous preterm birth	76
Prevention Strategies	88
Sonographic measurement of Cervical Length in the prediction of Preterm Delivery	101
- METHODS	103
- RESULTS	107
- DISCUSSION	115
- CONCLUSION	123
- SUMMARY	124
- REFERENCES	126
- ARARIC SUMMARY	

List of Tables

Table No.	Title	Page
1 vo.	Methods for Determining Gestational Age	12
2	Definitions of Spontaneous Abortion, Stillbirth and Live Birth	28
3	Proportion of Births for Various Gestational Age Categories	30
4	Risks of Preterm and Low Birth Weight Births by Number of Fetuses	80
5	Risk of Preterm Birth or Low Birth Weight (%)	80
6	Studies of Medical Interventions to Prevent Preterm Birth	89
7	Baseline characteristics of participants: Continuous data	107
8	Baseline characteristics of participants: Binary data	107
9	Area Under the Curve: Test Result Variable: cervical length	109
10	Coordinates of the Curve: Test Result Variable: cervical length	109
11	Clinical outcomes of included cohort: Continuous data	110
12	Clinical outcomes of included cohort; Continuous data: comparing means	110
13	Clinical outcomes of the included cohort: Binary data	110
14	Fisher's exact test for admission to NICU	111

Continue

List of Tables

Table	Title	Page
No.		
15	Fisher's exact test for neonatal need for mechanical ventilation	111
16	Fisher's exact test for preterm delivery (before 37 weeks)	112
17	Risk Estimate for occurrence of preterm birth (37 weeks)	112
18	Regression Model Summary	113
19	Analysis of the Variance	113
20	Coefficients of the regression model	114

List of Figure

Fig.	Title	Page
No.		
1	Receiver Operator Curve	108

ntroduction

INTRODUCTION

Preterm delivery, defined as delivery before completed 37 weeks of gestation, is associated with a 15-20% mortality rate and remains responsible for 75% of perinatal deaths in fetuses without anomalies. The accurate diagnosis and prediction of preterm delivery remains a major problem in obstetrics (*Shennan et al.* 2004).

A short cervix has been reported to be found as an incidental finding in 29% of pregnant women during mid-trimester transvaginal sonography (TVS) (*Ranch et al. 2007*).

There is no consensus regarding the evaluation of cervical length during pregnancy for predicting preterm delivery. This inconsistency may be explaned by differences in study populations (low-or high-risk patients), the parity of participants, the type of investigation (longitudinal or cross-sectional), and racial factors (*Ozdemir et al. 2007*). Furthermore the gestational age at which transvaginal ultrasound cervical length is measured significantly affects the calculation of risk of spontaneous preterm birth. It has been inferred that spontaneous preterm birth risk increases as the length of the cervix declines and as the gestational age decreases (*Berghella et al. 2007*).

In a summary of published data, a recent publication has cited several studies that consistently found a correlation between a short cervical length and a higher rate of spontaneous preterm delivery (*Grimes-Dennis et la. 2007*). The risk probably increases with a progressive shortening of the cervix as shown by a correlation between a greater change in the cervical length and an earlier gestational age at delivery. Ultrasonographic assessment of

cervical length is becoming an increasingly popular component of prenatal care. However, the role of this method as a screening tool in the prediction of preterm delivery in the first or early second trimester of pregnancy is still controversial (*Ozdemir et al. 2007*).

Research Objectives

RATIONALE

It is important to identify the patients at risk for preterm delivery to improve outcomes and to avoid unnecessary treatments, such as cerclage, corticosteroids, antibiotics, and hospital admissions.

AIM OF THE STUDY

The specific aim of the study is to determine the diagnostic accuracy of cervical length measurement using TVS in second trimester between (22-24 weeks) as a predictive value for spontaneous preterm labor in asymptomatic women with singleton pregnancy.

Review of Literally