Role of Refractive Surgery in Treatment of Keratoconus

Essay Submitted for Partial Fulfillment of Master Degree in Ophthalmology

BY
Nashwa Mohamed Ezzat

M.B., B.Ch.

Supervised By

Prof. Dr. Mervat Salah

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Ass. Prof. Dr. Tarek El Maemoun

Assistant Professor of Ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2006

دور جراحات الإنكسار الضوئى فى علاج القرنية المخروطية

رسالة مقدمة من الطبيب نشوى محمد عزات

بكالوريوس الطب والجراحة

توطئة للحصول على درجة الماجستير في طب و جراحة العيون

تحت إشراف الأستاذ الدكتور / ميرفت صلاح أستاذ طب و جراحة العيون كلية الطب - جامعة عين شمس

الأستاذ الدكتور / طارق مأمون

أستاذ مساعد طب و جراحة العيون كلية الطب - جامعة عين شـمس

> كلية الطب جامعة عين شمس 2006

Role of Refractive Surgery in Treatment of Keratoconus

Essay Submitted for Partial Fulfillment of Master Degree in Ophthalmology

BY
Nashwa Mohamed Ezzat

M.B., B.Ch.

Supervised By

Prof. Dr. Mervat Salah

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Ass. Prof. Dr. Tarek El Maemoun

Assistant Professor of Ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2005

Introduction

Keratoconus is a non inflammatory, progressive, bilateral thinning disease of the cornea. It is characterized by the development of a corresponding protrusion with an apex often located centrally or in an inferior eccentric position. The treatment of keratoconus depends on the severity of the disease.

In the disease's early stages, spectacles and contact lenses are the usual treatment modalities. In more advanced cases, with severe corneal irregular astigmatism and stromal opacities, contact lenses may no longer improve the visual acuity and a penetrating keratoplasty (PKP) is necessary to restore the visual function (*Kang et al*, 2005).

In some cases, however, the cornea is still transparent but the patient is contact lens intolerant. In such young, often allergic patients, the patient and the surgeon are often reluctant to pursue the PKP option (*Brierly et al*, 2000).

Currently, surgical options for correcting keratoconus can be classified into:

- 1. **Procedures that change the cornea**: lamellar keratoplasty and penetrating keratoplasty.
- 2. **Procedures that reinforce the cornea**: epikeratoplasty and intrastromal corneal ring segments (Intacs).
- 3. **Procedures that do not touch the cornea**: phakic intraocular lens (IOL).
- 4. **Procedures that weaken the cornea**: photorefractive keratectomy (PRK) and laser insitu keratomelusis (LASIK). (*Colin and Velou*, 2002).

Incisional Techniques such as radial and astigmatic keratectomies have limited applicability because of unpredictable efficacy, excessive instability and fragility of the cornea (*Colin and Velou*, 2002).

Procedures that change the cornea

Penetrating keratoplasty for keratoconus provides good visual results in most cases. However, visual rehabilitation is slow, there is a constant endothelial cell loss, and a risk of graft rejection (*Brierly et al*, 2000).

Deep lamellar keroplasty can be used to try to decrease the incidence of some of the complications of PKP (*Shimmura et al, 2005*).

Procedures that reinforce the cornea

For the treatment of keratoconus, it is far more logical to reinforce the cornea using additive technology, compared to weakening the structural integrity of the cornea using ablative or incisional procedures.

Epikeratoplasty aims at flattening the ectatic cornea and supporting the bulged corneal dome by adding healthy donor tissue. Progression of keratoconus may be arrested. If unsuccessful, the procedure could be complemented and there was no interference with a later PKP (*Wagoner et al, 2001*).

Intracorneal rings were first used for the correction of low myopia. They act as passive spacing elements that shorten the arc length of the anterior corneal surface and therefore flatten the central cornea.

The goal of using Intacs inserts for treating keratoconus is not to eliminate the corneal disease but to decrease corneal abnormality associated with it and improve visual acuity in affected patients to satisfactory levels (*Colin and Simonpoli*, 2003).

Procedures that do not touch the cornea

Phakic refractive IOLs are gaining more and more popularity due to ease of implantation and the predictability of refractive and visual results. Implantation of refractive IOL may be considered to avoid any corneal postoperative fragilization. Moreover, the anterior chamber depth is usually over 3.0 mm (*Budo et al, 2005*).

Procedures that weaken the cornea

Excimer laser photoablation has been used in keratoconus for two main purposes; first, as a therapeutic superficial keratectomy to treat patients with contact lens intolerance caused by a 'proud nebulae' and as a refractive procedure to flatten the cone and reduce high astigmatism enabling patients to regain relatively useful vision and conduct daily activities with or without spectacles or contact lenses, postponing the need for PKP (*Lahners et al, 2001*).

LASIK has been used to treat myopic astigmatism in patients with keratoconus. The initial visual results appeared promising, but longer follow up revealed regression of the refractive outcome in some cases. Excessive thinning of the stromal bed together with the action of the intraocular pressure may cause a progressive keratectasia manifesting months after the LASIK procedure (*Vinciguerra and Camasasca*, 2001).

References

- **Brierly SC, Izquierdo L Jr, Mannis MJ**: Penetrating keratoplasty for keratoconus. Cornea. 2000 May;19(3):329-32
- **Budo C, Bartels MC, van Rij G**: Implantation of Artisan toric phakic intraocular lenses for the correction of astigmatism and spherical errors in patients with keratoconus. J Refract Surg. 2005 May-Jun;21(3):218-22.
- **Colin J, Simonpoli VS**: The management of keratoconus with intrastomal corneal rings. Int Ophthalmol Clin. 2003 Summer;43(3):65-80.
- **Colin J, Velou S**: Utilization of refractive surgery technology in keratoconus and corneal transplants. Curr Opin Ophthalmol. 2002 Aug;13(4):230-4
- Kang PC, Klintworth GK, Kim T, Carlson AN, Adelman R, Stinnett S, Afshari NA: Trends in the Indications for Penetrating Keratoplasty, 1980-2001. Cornea. 2005 Oct;24(7):801-803.
- Lahners WJ, Russell B, Grossniklaus HE, Stulting RD: Keratolysis following excimer laser phototherapeutic keratectomy in a patient with keratoconus. J Refract Surg. 2001
- Shimmura S, Shimazaki J, Omoto M, Teruya A, Ishioka M, Tsubota K: Deep lamellar keratoplasty (DLKP) in keratoconus patients using viscoadaptive viscoelastics. Cornea. 2005 Mar;24(2):178-81.
- **Vinciguerra P, Camesasca FI**: Prevention of corneal ectasia in laser in situ keratomileusis. J Refract Surg. 2001 Mar-Apr;17(2 Suppl):S187-9. Erratum in: J Refract Surg 2001 May-Jun;17(3).

Wagoner MD, Smith SD, Rademaker WJ, Mahmood MA:
Penetrating keratoplasty vs. epikeratoplasty for the surgical treatment of keratoconus. J Refract Surg. 2001 Mar-Apr;17(2):138-46.

Aim of the Work

The purpose of this study is to review the recent literatures concerning various procedures of refractive surgery used in treatment of keratoconus.

Acknowledgement

First of all thanks to Allah,

without his aid this work would not have been possible.

I would like to express my sincere gratitude to **Prof. Dr. Mervat Salah**, professor of ophthalmology, Ain Shams university, for his continuous supervision, generous guidance, constructive criticism, cooperation and continuous support and for his valuable advice in the planning of the study. I will always remain indebted for his help and support.

I also feel deeply grateful to **Ass. Prof. Dr. Tarek El Maemoun**, assistant professor of ophthalmology, Ain Shams university, for his valuable help, huge assistance and encouragement in all the stages of this work.

I would like to offer my sincere thanks to all my staff and my dear colleagues at the ophthalmology department, Ain Shams university, for their help and guidance.

Last but not least I'd like to thank my family, as each member had a hand in the production of this modest piece of work.

List of Abbreviations

μm Micrometer

AA Analysis area

ALK Automated lamellar keratoplasty

ArF Argon fluride

BM Bowman's layer

BSC VA Best corrected visual acuity

BSS Balanced salt solution

C3-R Corneal collagen cross-linking riboflavin

CK Conductive keratoplasty

CLEK Collaborative longitudinal evaluation of

keratoconus

cm Centimeters

CSI Center/surround index

D Diopters

DALK Deep anterior lamellar keratoplasty

DK Diffusion constant

DM Descemet's membrane

DSI Differential sector index

EBM Epithelial basement membrane

E-value Eccentricity value

FDA Food and drug administration

FS Femtosecond

IAI Irregular astigmatism index

ICR Intra corneal ring

INTACS Intracorneal ring segments

IOL Intra ocular lens

List of Tables

Table 1	Implantation guidelines	86
Table 2	Ring thickness selection	93

List of Figures

Figure 1	Anatomy of the cornea	2
Figure 2	Normal corneal microarchitecture	8
Figure 3	Photomicrograph showing a discontinuity in Bowman's layer	
Figure 4	Fleischer ring	10
Figure 5	The Javal-Schiotz keratometer	
Figure 6	Placido's disc	17
Figure 7	Bowtie pattern (left) and asymmetrical bowtie pattern (right) of color coded corneal map	20
Figure 8	AstraMax system's polar grid	21
Figure 9	Raw AstraMax image of a keratoconic cornea	21
Figure 10	PAR CTS displays	23
Figure 11	Typical Orbscan quad map of an eye with mild irregular astigmatism	24
Figure 12	Pentacam Scheimpflug image	25
Figure 13	Pentacam anterior elevation map (left) and posterior elevation map (right)	26
Figure 14	An ultrasound image of a cornea	26
Figure 15	The Artemis display	27

Figure 16	Enantiomorphism	
Figure 17	Normal corneal topography	31
Figure 18	Topography of mild keratoconus	33
Figure 19	Topography of moderate keratoconus	34
Figure 20	Topography of advanced keratoconus	35
Figure 21	Fluorescein pattern of apical touch	37
Figure 22	Fluorescein pattern of apical bearing	38
Figure 23	SynergEyes lens	41
Figure 24	Distribution of bearing pressure in spherical (right) and aspherical lens (left)	44
Figure 25	A piggyback lens system for keratoconus	45
Figure 26	The Flexlens	46
Figure 27	A scleral and a corneal lens	47
Figure 28	The hand-held Castroviejo trephine	50
Figure 29	Schematic drawing of the principle of nonmechanical corneal donor trephination (A) and recipient trephination (B).	52
Figure 30	Different techniques of single continuous suturing	54
Figure 31	Corneal infiltrate with overlying epithelial defect post penetrating keratoplasty	58

Figure 32	Topography of high astigmatism after keratoplasty	61
Figure 33	Intraoperative photographs during DLK	69
Figure 34	DLK	70
Figure 35	FS Laser Pathway	76
Figure 36	Mechanism of FS laser	76
Figure 37	The endoscopic light probe	77
Figure 38	Intacs effect	84
Figure 39	Evolution of the ICR	85
Figure 40	The two 150-degree ring segments	86
Figure 41	Implantation of INTACS in stromal channel	91
Figure 42	INTACS procedure	92
Figure 43	Group I keratoconus	94
Figure 44	Group II keratoconus	95
Figure 45	INTACS exposure	98
Figure 46	INTACS Postoperative	101
Figure 47	Ring segments implanted inside the stromal tunnels	103
Figure 48	The parallel corneal layers and the collagen cross-linking after C3-R treatment	113