Evaluation of the reliability of Dynamic contrast- enhanced MRI in monitoring of tissue perfusion of free flaps

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF M.D. DEGREE
IN PLASTIC AND RECONSTRUCTIVE SURGERY

By
Raghda El Sayed Tallal Towfik

M.B.B.CH, M.S, Ain-Shams University

Supervised by

Prof. Dr/ Ayman Abu Elmakarem Shaker

Prof. of Plastic and Reconstructive surgery, Ain-Shams University

Prof. Dr/ Ahmed Ali Hassan

Prof. of Plastic and Reconstructive surgery, Ain-Shams University

Prof. Dr/ Khaled Aboualfotouh Ahmad

Prof. of Radiology, Ain-Shams University

Dr/ Hisham Ali Helal

Ass. Professor in Plastic and Reconstructive surgery, Ain-Shams University

Faculty of medicine

Ain-Shams University 2016

Acknowledgement

ABABABABABABABABABABABABABA

First \mathcal{D} thank $\boldsymbol{\mathcal{Allah}}$ the merciful for his blessings & goods.

Downld like to express my deep gratitude and honor to prof. Doctor/ Ayman Abu El Makarem Shaker, my mentor and teacher who guided me in my post-graduate studies in plastic surgery. D am honored by his supervision. He taught me respect, honor and dedication to work.

No words can express my deep feelings, honor and respect to my teacher prof. Doctor/ Ahmed All Hassan who really pushed me towards success. Thanks for his time, effort and support.

Also D would like to express my appreciation, respect and deep gratitude to Ass. Prof. Doctor/Hisham Ali Helal for his support during work. D would like to thank him very much for his advices and remarks, he gave me.

Doctor/ Khaled Aboualfotouh Ahmad who really did much in his study, and for his support.

IDA DA DA

List of contents

Introduction	1
Aim of the work	6
Review of literature	7
Evolution of free flaps	7
Cutaneous perfusion	8
Physiology of circulation regulating blood flow in free flaps	9
Perfusion heterogeneity in free flaps	12
Vascular insult in free flaps	13
Reperfusion Injury and the No-Reflow Effect	15
Methods of assessment of free flap vascularity	23
Free flap monitoring in experimental studies	43
Dynamic Contrast-Enhanced MRI	45
Clinical applications of DCE-MRI.	54
Dynamic contrast-enhanced MRI as a non-invasive tool to ev	aluate tissue
perfusion of free flaps.	57
Patients and methods	62
Study design and patient population	62
Preoperative assessement.	63
Operative procedure	66
Post-operative assessment	71
Statistical methodology	77
Results	78
Demography of patient's population	78
MRI results	81
Discussion	105

/	ict	nf	contents
_	ısı	u	LUITEITIS

Summary and conclusion	113
References	110
Arabic summary	135

List of tables

List of tables

Table (1):	Patients' data	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	83
Table(2):	Sensitivity,	specificity	PPV,	NPV	of
	<i>MRI</i>	•••••			103

List of figures

Fig. (1):	A schematic representation of the vascular structure of the skin and subcutis. The important structures for flap blood flow such as dermal and prefascial plexuses are underlined as well as the musculocutaneous artery
Fig. (2):	Ischemia: Neutrophil and endothelial cell 02 and ATP depletion promote (1) buildup of NADPH and hypoxanthine stores, and (2) flux of Ca2+ into cystol
Fig. (3):	Reperfusion: O2 and Ca2+ replenishment fosters (1) enzymatic pathways toward oxygen radical production, and (2) further flux of Ca2+ into cystol
Fig. (4):	Leukocyte-endothelial cell adherence and transmigration after ischemia- reperfusion. Activated leukocytes interact with the vascular endothelium via a series of distinct steps
Fig. (5):	Pathogenesis of oxygen-derived free radicals in reperfusion of ischemic tissues
<u>Fig. (6)</u>	Proposed role of intracellular Ca2+ overload in the pathogenesis of ischemia–reperfusion injury22
<u>Fig. (7):</u>	Temperature strip monitoring26
<u>Fig. (8):</u>	The flap monitoring chart
<u>Fig. (9):</u>	The implantable Doppler system showing the silicone cuff around the vein before skin closure

Fig. (10):	Laser Doppler flowmetry monitoring of a deep inferior epigastric perforator flap reconstruction31
<u>Fig. (11):</u>	Duppler ultrasonography showing the monitoring of a buried gracilis flap33
<u>Fig. (12):</u>	Schematic illustration of a microdialysis catheter inserted through tissue35
Fig. (13):	Microdialysis monitoring of a muscle flap covered by a split skin graft. The catheter is inserted into the flap and secured by sutures. Amicrovial is connected to the catheter to collect the fluid. Anadvantage of microdialysis, shownhere, is that the catheter can be inserted next to the flap and tunneled to it subcutaneously, preventing interference between monitoring and wound dressings
<u>Fig. (14):</u>	Near-infrared spectroscopy showing the preoperative calibration of the device in a deep inferior epigastric perforator flap reconstruction
Fig. (15):	SPET as a non-invasive nuclear imaging test42
Fig. (16):	Important subsystems in an MRI scanner. The patient is placed inside the main magnet. Inside the magnet and surrounding the patient are coils producing the linear gradients as well as RF coils. A large RF coil (body coil), built into the MRI casing, and specialized smaller coils, e.g., a head coil inserted when needed, are used during imaging. The MRI operator controls the imaging from a computer running a specific MRI pulse sequence. The sequence is a set of instructions that control the gradient waveforms and RF pulses and collect the received signal digitized in the analog-to-digital converter (ADC). A

	reconstruction program, decoding the received signal, is
	used to create the images47
Fig. (17):	Example of DCE-MRI of acute ventricular lesions55
Fig. (18):	Normally perfused free flap (musculo-fasciocutaneous latissimus dorsi flap) in a 17-year-old male patient. a) Clear increase of signal intensity versus time within the free flap (muscle part) in all regions of the flap. b) Clear increase of signal intensity within the reference tissue in all regions of the flap
Fig. (19):	Post traumatic defect of the dorsum of the hand64
Fig. (20):	Preparing the defect and recipient vessels
<u>Fig. (21):</u>	Design of dorsalis pedis artery free flap according to defect size
Fig. (22):	Inset of the dorsalis pedis artery free flap without tension by simple suturing and inserting a drain70
Fig. (23):	MRI system Achieva, Philips72
<u>Fig. (24):</u>	MRI sequences of dorsalis pedis artery free flap (a) at site of anastomosis, (b) central part, (c) distal74
Fig. (25):	Showing the feeding vessel after I.V gadolinium injection in free dorsalis pedis artery flap74
Fig. (26):	Normally perfused free dorsalis pedis artery flap (a) Clear

	increase of signal intensity versus time within the free flap in all regions of the flap. (b) Clear increase of signal intensity within the reference tissue in all regions of the flap
<u>Fig. (27):</u>	Late post-operative photo of free dorsalis pedis artery flap passed uneventful
Fig. (28):	The aetiology of hand skin defects79
<u>Fig. (29):</u>	The location of the defects in the study80
Fig. (30):	Type of flaps used in the study80
Fig. (31):	Clinical outcome of the flaps81
Fig. (32):	Early post-operative photo of free fibula flap with shin paddle85
Fig. (33):	MRI study done on free fibula flap within 48 hrs post- operatively. The fibula is visualized and assessed
<u>Fig. (34):</u>	Normally perfused free fibula flap skin paddle (a) Clear increase of signal intensity versus time within the free flap in all regions of the flap. (b) Clear increase of signal intensity within the reference tissue in all regions of the flap
Fig. (35):	Mean signal intensity curves showing clear increase of signal intensity within the fibula and reference tissue
Fig. (36):	Late post-operative picture of the patient at 2 weeks.

<u>Fig. (37):</u>	Normally perfused free fibula flap with skin paddle (a) Clear increase of signal intensity versus time within the free flap skin paddle in all regions of the flap. (b) Clear increase of signal intensity within the reference tissue in all regions of the flap after 2 weeks
<u>Fig. (38):</u>	Mean signal intensity curves showing clear increase of signal intensity within the burried fibula and reference tissue after 2 weeks
Fig. (39):	Early post-operative picture of free latissimus dorsi muscle flap91
<u>Fig. (40):</u>	DCE-MRI done within 48 hrs post- operatively92
<u>Fig. (41):</u>	DCE-MRI of free latissimus flap showing the feeding vessel after contrast injection 2 nd day post-operatively
Fig. (42):	Mean signal intensity curves showing normally perfused free latissimus dorsi flap (a) clear increase of signal intensity versus time within the free flap in area of anastomosis and central part of the flap, but nearly no signal increase in the distal part of the flap (b) Clear increase of signal intensity within the reference tissue in all regions of the flap93
Fig. (43):	Late post-operative picture before debridement of distal part
Fig. (44):	Mean signal intensity curves showing normally perfused free latissimus flap (a) clear increase of signal intensity versus time within the free flap in area of anastomosis and central part of the flap, (b) Clear increase of signal intensity within the reference tissue in all regions of the

	flap after 2 weeks95
Fig. (45):	Male patient 53 yrs old with post-traumatic hand defect, he underwent reconstruction with free dorsalis pedis artery flap
Fig. (46):	MRI study done on free dorsalis artery flap within 1 st 24 hours post-operatively. A. area of anastomosis, b. central part, c. distal part of the flap98
<u>Fig. (47):</u>	Mean signal intensity curves showing congested free dorsalis pedis artery flap in all regions of the flap
Fig. (48):	Mean signal intensity curves showing clear increase of signal intensity within the reference tissue in all regions of the flap
Fig. (49):	Mean signal intensity curves of free radial forearm flap showing (a) congested free flap in all regions of the flap, (b) Clear increase of signal intensity within the reference tissue in all regions of the flap
<u>Fig. (50):</u>	DCE-MRI of free radial forearm flap showing the patent feeding vessel at 10 th day postoperative102
Fig. (51):	Mean signal intensity curves of free radial forearm flap done 10 days post-operative showing (a) ischemic free flap in all regions of the flap, (b) Clear increase of signal intensity within the reference tissue in all regions of the flap

List of abbreviations

3D: three dimentional.

AMP: adenosine monophosphate.

ATP: adenosine triphosphate.

ATPase: adenosine triphosphatase.

ASL: arterial spin labeling.

Ca2+: calcium.

CA: contrast agent.

CEUS: contrast-enhanced ultrasound.

CL+: chloride.

CT: computed tomography.

DCE-MRI: dynamic contrast enhanced- magnetic resonance imaging.

DIEP: deep inferior epigastric.

DSC: dynamic susceptibility contrast enhanced.

EDCFs: Endothelium-derived contracting factors

EDRFs: Endothelium-derived relaxing factors.

ET-1: Endothelin-1.

ET: echo time.

FCD: functional capillary density.

FOV: Field of View.

fMRI: functional magnetic resonance imaging.

Fs: fat saturation.

Gd-DTPA: Gadolinium diethylene triamine pentacetic acid

GRE: gradient echo.

H+: hydrogen.

List of abbreviations

H2O2: hydrogen peroxide.

HOCl: hypochlorous acid.

IFM: intravital fluorescence microscopy

JIA: juvenile idiopathic arthritis.

Kg: kilogram.

LDF: laser Doppler flowmetry.

MHz: megahertz.

MPO: myeloperoxidase.

mm: melimeter.

MRI: magnetic resonance imaging.

NA+: sodium.

NADPH: nicotinamide adenine dinucleotide phosphate.

NHE-1: Na+/H+ exchange isoform-1.

NIRS: Near infrared spectroscopy.

O2: oxygen.

OH: hydroxyl radical.

OPS: Orthogonal polarization spectral.

PET: positron emission tomography.

PGI2: Prostacyclin.

NO: Nitric oxide.

RF: radiofrequency.

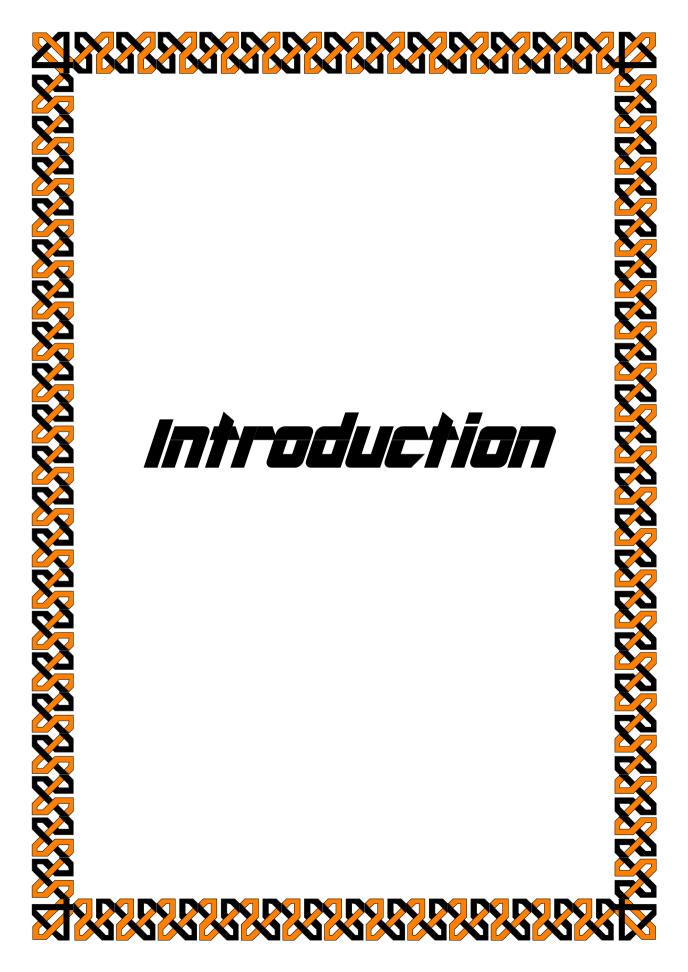
ROI: region of interest.

RT: repetition time.

SD: standard deviation.

List of abbreviations

SE: spin echo.


SPET: Single photon emission tomography.

SPSS: statistical program for social science.

Tc: technetium.

THRIVE: T1 Weighted High Resolution Isotropic Volume Examination.

TXA2: thromboxane A2.

