HEAT TRANSFER AND PRESSURE DROP ANALYSIS IN SHELL AND TUBE HEAT EXCHANGERS: SEGMENTAL BAFFLES DESIGN

 $\mathbf{B}\mathbf{y}$

Eng. Ahmed Adel Hamza Mostafa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

HEAT TRANSFER AND PRESSURE DROP ANALYSIS IN SHELL AND TUBE HEAT EXCHANGERS: SEGMENTAL BAFFLES DESIGN

By

Eng. Ahmed Adel Hamza Mostafa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil

Dr. Gamal El Hariry

Professor of Mechanical Power Engineering – Cairo University Assistant Professor of Mechanical Power Engineering – Cairo University

Dr. Waleed Abdel-Samea

Dr. Emad M. S. El-Said

Assistant Professor of Mechanical Power Engineering – Cairo University

Assistant Professor of Mechanical Engineering – Fayoum University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

HEAT TRANSFER AND PRESSURE DROP ANALYSIS IN SHELL AND TUBE HEAT EXCHANGERS: SEGMENTAL BAFFLES DESIGN

By

Eng. Ahmed Adel Hamza Mostafa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil

Thesis Advisors and Member

Prof. Dr. Abdel-Wahed Fouad El-Dib

Internal Examiner

Prof. Dr. Osama Ezzat Abd El-Latef

External Examiner

Professor of Mechanical Power Engineering - Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

Engineer's Name: Ahmed Adel Hamza Mostafa

Date of Birth: 21/12/1987 **Nationality:** Egyptian

E-mail: ahmedadel_1987@hotmail.com

Phone: 01005100805

Address: 707 Zahraa Nasr City- El Hay El Asher

Registration Date: 1/10/2013 **Awarding Date**: / /

Degree: Doctor of Philosophy

Department: Mechanical Power Department

Supervisors: Prof. Dr. Essam E. Khalil

Dr. Gamal Abdel Monem El-Hariry Dr. Waleed Abdel Samea Marouf

Dr. Emad Mohamed Saad El Said (Assistant Professor of Mechanical

Engineering – Fayoum University)

Examiners: Prof. Dr. Essam E. Khalil

Prof. Dr. Abdel-Wahed Fouad El-Dib

Prof. Dr. Osama Ezzat Abd El-Latef (Professor of Mechanical Power

Engineering, Faculty of Engineering in Shoubra, Benha University)

Title of Thesis: HEAT TRANSFER AND PRESSURE DROP ANALYSIS IN SHELL AND TUBE HEAT EXCHANGERS: SEGMENTAL BAFFLES DESIGN

Key Words: CFD; heat exchangers; shell and tube; baffle spacing; turbulence model Summary:

The shell side design of a shell-and-tube heat exchanger; in particular the baffle spacing, baffle cut and baffle orientation dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modeling a heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turbulent flow. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the Literature method results.

ACKNOWLEDGEMENT

I hereby would like to express my deep gratitude and thanks to **Prof. Dr. Essam E. Khalil** and **Dr. Gamal El-Hariry** for their support, continuous encouragement and distinctive supervision throughout the course of this work. They helped providing me with up to date technical references that were of great help in the present work. Also I would like to thank to **Dr. Waleed Abdel-Samea** and **Dr. Emad M. S. El-Said** for their supports. In addition, **Dr.Waleed** contacted CFX personnel in order to negotiate for a free academic version of ANSYS 16 CFD package. Furthermore, he encouraged me to produce several technical papers as a co-author with him and provided the required support for these papers to be accepted.

Also, I cannot express; in words; my thanks and gratitude to **my family** for their great and continuous help and support they provided me to finish this work in a suitable form.

Nevertheless, I cannot forget the support of **my colleagues** in the Mechanical Power Engineering department as well as for my Professors for their encouragement and concern throughout the scope of the work.

Finally, I should express my gratitude for the CFX® personnel for their kind interest in the current project and their support via supplying us with a free license of the ANSYS 16 package.

SUBJECT		PAGE
CONTENTS		i
LIST OF TABLES		iv
LIST OF FIGURES		iiv
SYMBOLS AND ABBREVIATIONS		iiiv
ACKNOWLEDGEMENT		v
ABSTRACT		vi
CHAPTER 1 INTRODUCTION	1	
1.1 General	1	
1.2 Heat Exchangers And There Types	1	
1.3 Shell and tube heat exchangers	3	
1.3.1 Indirect-Contact Heat Exchangers	4	
1.3.2 Direct contact Heat Exchangers	5	
1.3.2.1 Immiscible Fluid Exchangers	5	
1.3.2.2 Gas-Liquid Exchangers	5	
1.3.2.3 Liquid-Vapor Exchangers	6	
1.4 Shell And Tube Heat Exchangers: Applications And Main Components	6	
1.4.1 Tubes	6	
1.4.1.1 Tube diameter	7	
1.4.1.2 Tube wall thickness	7	
1.4.1.3 Tube length	7	
1.5 Multi-pass Exchangers	7	
1.6 Baffles	8	
1.7 Tubular Exchangers Manufacturers Association (TEMA) Design Code	9	
1.8 Computational Fluid Dynamics	11	
1.9 CFX	12	
CHAPTER 2 LITERATURE REVIEW	14	
2.1 Introduction	14	
2.2 Experimental Analysis Of Shell And Tube Heat Exchanger	15	
2.3 Computational Fluid Dynamics (CFD) Analysis	20	

2.4 Objective Of Present Study Work 24			
CHAPTER 3 GOVERNING EQUATIONS	26		
3.1 Introduction	26		
3.2 Fluid Element For Conservation Laws	26		
3.3 Continuity Equation	27		
3.4 Momentum Conservation Equations	28		
3.5 Energy Conservation Equation	29		
3.6 Species Transport Equations	30		
3.7 Turbulence Modelling	31		
3.8 Reynolds Averaging	34		
3.9 Solution Behaviour For Turbulence Models	39		
3.10 The k-ε Models	40		
3.10.1 The Standard k-ε Model	41		
3.10.2 RNG Mathematical Model Transport Equations	42		
3.11 Data Reduction	42		
CHAPTER 4 NUMERICAL INVESTIGATION AND RESULTS	45		
4.1 Introduction	45		
4.2 Computational Model			
4.3 Model Solution Methodology	48		
4.4 Grid Generation	50		
4.5 Mesh	53		
4.6 Setup Of Problem	53		
4.7 Model Validations	53		
4.8 Temperature Contours	60		
4.9 Velocity Vectors Path Line With Pressure Fields	62		
4.10 Empirical Formula Of Output Nusselt Number	67		
4.11 Analysis Of Baffle Space And Baffle Cut Of Shell And Tube Heat Ex	changer		
	67		
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS F	OR		
FUTURE WORKS	75		
5.1 General	75		
5.2 Conclusions 75			
5.3 Recommendations for future work	77		

References 78

LIST OF TABLES

Table	Description	Page
Table 1.1	Values of C and m	17
Table 2.1	Nusselt number correlations	19
Table 3.1	Turbulence models	36
Table 4.1	SHTHEX Essential Geometry Dimensions	46
Table 4.2	Different domains and interfaces generated by ANSYS CFX pre-processor	
		52
Table 4.3	Values of a, b, c and d	67

LIST OF FIGURES

Figure	Description	Page
Fig. 1.1 rotating	Types of heat exchanges: (a) shell -and-tube, (b) plates, (c) open-flow and (d-wheel.	3
Fig. 1.2	Shell -and-tube exchanger with one shell pass and one tube pass.	4
Fig. 1.3	Series coupling or over -and-under pass arrangement	8
Fig. 1.4	Flow distributions in shell side	11
Fig. 1.5	Baffle Cut Configuration	11
Fig. 2.1	Experimental variation of ${^{Nu_s}}\!/\!{p_{r_s}}^{1/3}$ with ${^{Re}}_s$ for four different heat	
exchang	gers	18
Fig. 3.1	Fluid element for conservation laws	27
Fig. 3.2	Stress components on the three faces of the fluid element	28
Fig. 3.3	Typical point velocity measurement in turbulent flow	32
Fig. 4.1	Model of Segmental Baffle Heat Exchanger	47
Fig. 4.2	Hexagonal arrangement of tube in shell and tube heat exchanger	47
Fig. 4.3	Baffle Angle measurement	48
Fig. 4.4	Flow chart of method used for CFD application	49
Fig. 4.5	Model grid of tetrahedron type	51
_	Variation of shell side Nusselt number (Nu_{shell}) with shell side inlet flow rate at different number of cells	es 54
_	Variation of tube side Nusselt number (Nu_{tube}) with tube side inlet flow rate at different number of cells	55
_	Pressure drop percentage deviation of shell side pressure drop (ΔP %) ons at various turbulence models.	56
_	Heat transfer coefficient of shell side deviation percentage (hs%) of various w rates predictions at various turbulence models.	56
Fig. 4.10 equation	Conversion of iterations of x , y and z velocity components of the momentums.	m 57
Fig. 4.11	Conversion of Heat Transfer	58
Fig.4.12	Conversion of Turbulent model k-ε.	58
_	Nusselt number values for the present study predictions in comparison with	the 59

0	Euler number values for the present study predictions in comparison wit tput simulated data and numerical predictions of Chen Wang	h the 60
Fig. 4.15	Temperature contours of 10° baffles angle	60
Fig. 4.16	Temperature contours of 32° baffles angle	61
Fig. 4.17	Temperature contours of 0° baffles angle	61
Fig. 4.18	Pressure drop and velocity vectors path line of 20° baffles angle	62
Fig. 4.19	Pressure drop and velocity vectors path line of 0° baffles angle	62
Fig. 4.20	Pressure drop and velocity vectors path line of 15° baffles angle	63
Fig. 4.21	Variation of Nu against Re for 0° to 10° angle baffles	63
Fig. 4.22	Variation of Nu against Re for 10° to 20° angle baffles	64
Fig. 4.23	Variation of Nu against Re for 20° to 30° angle baffles	64
Fig. 4.24	Variation of Nu against Re for 30° to 40° angle baffles	65
Fig. 4.25	Variation of Nu against Re for 40° to 50° angle baffles	65
Fig. 4.26	Variation of Nu against Re for 50° to 60° angle baffles	66
Fig. 4.27	Variation of Nu/Eu against Re from 0° to 60° angle baffles	67
Fig. 4.28	Contours of Static Pressure on Shell Side When B_c =36% of N_b =6	68
Fig. 4.29	Contours of Static Pressure on Shell Side When B_c =36% of N_b =8	68
Fig. 4.30	Contours of Static Pressure on Shell Side When B_c =36% of N_b =10	68
Fig. 4.31	Contours of Static Pressure on Shell Side When B _C =36% of N _b =12	69
Fig. 4.32	Contours of Temperature on Shell Side when B _C =36% of N _b =6	69
Fig. 4.33	Contours of Temperature on Shell Side when B _C =36% of N _b =8	69
Fig. 4.34	Contours of Temperature on Shell Side when $B_c=36\%$ of $N_b=10$	70
Fig. 4.35	Contours of Temperature on Shell Side when B _c =36% of N _b =12	70
Fig. 3.36	Contours of Static Pressure on Shell Side When B_c =25% of N_b =6	71
Fig.3.37	Contours of Static Pressure on Shell Side When B _c =25% of N _b =8	71
Fig.3.38	Contours of Static Pressure on Shell Side When B _c =25% of N _b =10	71
Fig. 4.39	Contours of Static Pressure on Shell Side When B _c =25% of N _b =12	72
Fig. 4.40	Contours of Temperature on Shell Side When B_c =25% of N_b =6	72
Fig. 4.41	Contours of Temperature on Shell Side When B_c =25% of N_b =8	72
Fig. 4.42	Contours of Temperature on Shell Side When Bc=25% of Nb=10	73

Nomenclature

Symbol	Quantity
A	Heat transfer area, m ²
Bc	Baffle cut off ratio (%)
C	Dimensionless constant of proportionality
C_p	Constant Pressure Specific Heat, J/kg K
D	Diameter of tube, m
D	Diameter of shell, m
D_{eq}	Equivalent Diameter, m
Eu	Euler Number
F	Force per unit volume, N/m ³
g	Gravitational acceleration, m/s ²
Н	Enthalpy, kJ/kg
h_s	Heat transfer coefficient of shell side, W/m ² K
I	Air exchange
K	turbulent kinetic energy
k	Thermal conductivity, W/m K
L	Length of baffle spacing, m
m	Mass, kg
\dot{m}	Mass flow rate, kg/s
Nu	Nusselt Number
N	Number of tubes
P	Pressure, pa
Pr	Prandtl Number
Q	Heat transfer rate, W
Q	Volume flow rate, m ³ /hr
Re	Reynolds Number
S	Area of flow cross-section, m ²
t	Thickness of tube, m
T	Temperature, K
U	Characteristic velocity of the mean flow, m/s
U	Instantaneous velocity component in x direction, m/s
V	Instantaneous velocity component in y direction, m/s
W	Instantaneous velocity component in z direction, m/s
x, y, z	Cardinal coordinate components

Greek letters

- β Baffle angle, degree
- ΔP Pressure drop, Pa
- ρ Fluid density, kg/m³
- μ Dynamic viscosity, N.s/m²
- κ Kinetic Energy, W
- ε Dissipation rate, W/s
- ∇ Gradient
- **ω** Specific dissipation

Superscripts and Subscripts

- 1 Initial
- 2 Final
 - Fluctuating component of any property
- o Outlet
- -- Mean Property
- → Vector quantity
- c Cold
- Crit Critical
- h Hot
- i,j,k Cartesian coordinates' directions
- In Inlet
- Ref Reference
- T Turbulent property
- w Water

Abbreviations

2D Two dimensional configurations3D Three dimensional configurations

ASM Algebraic Stress Model

CFD Computational Fluid Dynamics

HT Heating Transfer

RANS Reynolds average Navier- Stokes equations

RNG Renormalization group RSM Reynolds Stress Model

SHTHEX Shell and tube heat exchanger

STD Standard

SIMPLEC Semi-Implicit Method for Pressure-Linked Equations Consistent

ABSTRACT

The aim of this study is to simulate and analyze the heat transfer and friction characteristics of shell and tube heat exchangers. Case Studies are made to decrease the pressure drop and to increase the heat transfer and the ratio of heat transfer and pressure drop in shell and tube type heat exchanger by tilting the baffle angle up to which we get the minimum pressure drop using different turbulence models. The optimum results are found at baffle tilting angle of 32° and RNG $k-\epsilon$ turbulence model. The ratio of Nus / Eu deals with high heat transfer and low pressure drop and that is found at angle of 32° baffle angle 12% more than segmental baffle at 0° baffle angle.

Other studies are carried out using a set of CFD simulations for a single shell and single tube pass heat exchanger with a variable number of baffles and different baffle cutoff. The results are observed to be sensitive to the turbulence model selection. The results are observed to be sensitive to the turbulence model selection. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the Bell-Delaware method results. For two baffle cut values, the effect of the baffle spacing to shell diameter ratio on the heat exchanger performance is investigated by varying flow rate. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with literature data results. All studies are carried out using commercial software for computational fluid dynamics (CFD) known as ANSYS CFX 16. The CFD modeling techniques solved the continuity, momentum and energy conservation equations in addition to RNG $k-\epsilon$ model equations for turbulence closure.