

Immunohistochemical expression of stem cell markers CD133 and Oct-4 in cases of endometrial hyperplasia and endometrial carcinoma

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Pathology

By Nihal Hatem Shoukry Ahmed

M.B.B.CH, Msc. Pathology Misr University for Science and Technology

Supervised By

Prof. Dr. Nadia Bayomy Mahmoud

Professor of Pathology Faculty of Medicine - Ain Shams University

Prof. Dr. Magda Hassan Abdel Hamid

Professor of Pathology Faculty of Medicine - Ain Shams University

Prof. Dr. Hala Sobhy Cousha

Professor of Pathology Faculty of Medicine - Ain Shams University

Dr. Eman Abdel Salam Ahmed

Assistant Prof Pathology
Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain Shams University 2017

بست شيرالله الترمين الرجيم

وَاللَّهُ أَخْرَجَكُم مَّن بُطُونِ أُمَّهَا تَعْلَمُ وَنَ شَيئًا وَجَعَلَمُ لَا تَعْلَمُ وَنَ شَيئًا وَجَعَلَمُ لَلَّ مَا لَكُمُ السَّمْعَ وَجَعَلَ لَكُمْ السَّمْعَ وَالْأَبْ صَارَ وَالْأَقْئِدَةَ لَعَلَّكُمْ الْعَلَيْمُ وَالْأَبْ صَارَ وَالْأَقْئِدَةَ لَعَلَّكُمْ تَشْكُرُونَ وَالْأَقْئِدَةَ لَعَلَّكُمْ وَالْمُرُونَ

صَّالِ وَاللَّهُ اللَّهُ الْعُظَمِينَ،

(سورة النحل الآية ٧٨)

Acknowledgements

First of all, thanks to **ALLAH** who gave me the opportunity to start this work and also gave me the strength and power to complete it in the best way I could.

My deepest gratitude, profound gratefulness and thanks to **Prof. Dr. Nadia Bayomy Mahmoud** professor of pathology, faculty of Medicine, Ain Shams University for her patience, motivation & guidance.

My sincere thanks and gratitude to **Prof. Dr. Magda Hassan Abdel Hamid** professor of pathology, faculty of Medicine, Ain Shams University for meticulous supervision, continuous support and valuable contribution, that are higly appreciated.

It gives me a great pleasure and honor to present my deepest gratitude to **Prof. Dr. Hala Sobhy Cousha** professor of pathology, faculty of Medicine, Ain Shams University, for her guidance, and encouraging attitude throughout this work.

I would like to express my sincere gratitude and deepest appreciation to **Dr. Eman Abdel Salam Ahmed** Assistant professor of pathology, faculty of Medicine, Ain Shams University, this accomplishment would not have been possible without her.

And finally, last but by no means least, I would like to dedicate this work to the soul of prof. **Dr. Bothaina Mahmoud Said** and I would like to express my deepest thanks to all staff members, colleagues in pathology department, faculty of Medicine, Ain Shams University and Misr for Science and Technology, my **parents** for their support throughout this work. Also, I would like to extend my graditude to my husband **Yasser**, **Nahla** and **Amr** for their enormous support.

Lists of Contents

Title	Page No.
List of Abbreviations	I
List of Table	II
List of Figures	V
List of Graphs	IV
Introduction and Aim of the work	1
Review of literature	5
Material and Methods	85
Results	98
Discussion	136
Conclusion and Recommendation	155
Summary	157
References	161
Arabic Summary	

Tists of Abbreviations

ACOG	:	American College of Obstetricians and Gynecologists.		
ASCs	:	Adult Stem Cells.		
СЕН	:	Complex Atypical Hyperplasia.		
CLL	:	Chronic Lymphoid Leukemia.		
CSC	:	Cancer Stem Cells.		
ECDU	:	Early Cancer Detection Unit.		
ЕН	:	Endometrial Hyperplasia.		
ЕНА	:	Simple Atypical Hyperplasia.		
EIC	:	Endometrial Intra-epithelial Carcinoma.		
EpCAM	:	Epithelial Cell Adhesion Molecule.		
ERCs	:	Endometrial regenerative Cells.		
ESCs	:	Embryonic Stem Cells.		
FIGO	:	International Federation of Gynecology and Obstetrics.		
GPC3	:	Glypican 3.		
HNPCC	:	Hereditary Nonpolyposis Colorectal Cancer.		
HSCs	:	Hematopoietic Stem Cells.		
ICM	:	Inner Cell Mass.		
IL-4	:	Interlukin-4.		
LVSI	:	Lymph vascular Space Invasion.		
MMR	:	Mismatch Repair.		

MSCs		Mesenchymal Stem Cells.
MISCS	:	Weselicitymai Stem Cens.
MSI	:	Microsatellite Instability.
PCOS	:	Polycystic Ovarian Syndrome.
RCOG	:	Royal College of Obstetricians and Gynecologists.
RR	:	Relative Risk
SEER	:	Surveillance Epidemiology and End Results program.
SEH	:	Simple Endometrial Hyperplasia without atypia.
SHBG	:	Sex Hormone Binding Globulin.
SSCs	:	Somatic Stem Cells.
TEK	:	Receptor Tyrosine Kinase.
TICs	:	Tumour Initiating Cells.
TNM	:	Tumor, Node, Metastasis.
USPC	:	Uterine Papillary Serous Carcinoma.
WHO	:	World Health Organization.

Lists of Tables

Table No.		Title	Page No.
Table 1	•	Architectural grading of endometrial carcinoma by "FIGO" 3-grade system.	54
Table 2	:	Nuclear Grading of endometrial carcinoma that is used in modified "FIGO" 3-grade system.	55
Table 3	:	Grading of endometrial carcinoma by "FIGO" 2-grade system.	55
Table 4	:	TNM and FIGO staging of non- trophoblastic Tumors of Uterine Corpus	56
Table 5	:	Age of the studied cases.	99
Table 6	:	Relation between parity and studied cases.	100
Table 7	:	Relation between endometrial thickness and studied cases.	101
Table 8	:	Types of endometrial hyperplasia among studied cases.	102
Table 9	:	Types of endometrial carcinoma among carcinoma cases.	103
Table 10	•	Distribution of grades among carcinoma cases.	104

Table No.		Title	Page No.
Table11	:	Distribution of endometrial carcinoma cases according to FIGO staging.	105
Table 12	:	Expressions of CD133 in the cases in our work.	108
Table 13	:	Expressions of Oct4 in the cases in our work.	111
Table 14	:	Relation between low and high expression of CD133 and Oct4 in relation to the grade of endometrial carcinoma.	112
Table 15	:	Low and high expression of CD133 and Oct4 in relation to FIGO staging.	113
Table 16	:	Low and high expression of CD133 and Oct4 in relation to pT stage.	114
Table 17	:	Low and high expression of CD133 and Oct4 in relation to pN stage.	115
Table 18	:	Low and high expression of CD133 in relation to pM stage.	116
Table 19	:	Low and high expression of Oct4 in relation to pM stage.	117

List of Figures

Figure No.		Title	Page No.
Figure 1	:	Female genital tract.	6
Figure 2	:	Menstrual cycle changes showing endometrial changes.	9
Figure 3	:	Location of endometrial stem cells.	65
Figure 4	:	Patterns of stem cell division.	68
Figure 5	:	Cancer stem cell therapy.	72
Figure 6	:	Spearman's analysis correlation test illustrating slight upregulation of CD133 from control cases to the cases of endometrial carcinoma (statistically insignificant).	108
Figure 7	:	Spearman's analysis correlation test illustrating upregulatin of Oct4 from control cases to the cases of endometrial carcinoma (statistically significant).	111
Figure 8	:	Control of CD133 invasive duct carcinoma showing membranous stain.	118
Figure 9	:	Control of CD133 invasive duct carcinoma showing membranous stain.	118
Figure 10	:	Control of Oct4 seminoma showing nuclear stain.	119

Figure 11	:	Control of Oct4 semiona showing nuclear stain.	119
Figure 12	:	Simple endometrial hyperplasia.	120
Figure 13	:	Simple endometrial hyperplasia showing low apical cytoplasmic expression of CD133.	120
Figure 14	:	Simple endometrial hyperplasia showing low nuclear expression of Oct4.	121
Figure 15	:	Complex endometrial hyperplasia.	121
Figure 16	:	Complex endometrial hyperplasia showing high cytomplasmic expression of CD133.	122
Figure 17	:	Complex endometrial hyperplasia showing high focal nuclear expression of Oct4.	122
Figure 18	:	Proliferative endometrial H&E.	123
Figure 19	:	Proliferative endometrium showing high cytomplasmic expression of CD133.	123
Figure 20	:	Proliferative endometrium showing high nuclear expression of Oct4.	124
Figure 21	:	Well differentiated endometrial carcinoma grade 1 (type1).	124
Figure 22	:	Well differentiated endometrial carcinoma grade 1 H&E.	125

Figure 23	:	Well differentiated endometrial carcinoma grade 1 showing low cytoplasmic expression of CD133.	125
Figure 24	:	Well differentiated endometrial grade 1 showing high cytoplasmic expression of CD 133.	126
Figure 25	:	Grade 1 endometrial carcinoma showing high expression of Oct4.	126
Figure 26	:	Moderately differentiated endometrial carcinoma grade 2 (type1).	127
Figure 27	:	Grade II endometrial carcinoma showing low cytoplasmic expression of CD 133.	127
Figure 28	:	Grade II endometrial carcinoma showing high focal nuclear expression of Oct4.	128
Figure 29	:	Grade III endometrial carcinoma (typeI)	128
Figure 30	:	Immunohistochemical expression of the previous case showing low cytoplasmic expression of CD133.	129
Figure 31	:	Grade III endometrial carcinoma showing high nuclear expression of Oct4.	129
Figure 32	:	Villoglandular adenocarcinoma H & E	130

Figure 33	:	Villoglandular adenocarcinoma showing high cytoplasmic expression of CD133.	130
Figure 34	:	Adenosquamous endometrial carcinoma H&E.	131
Figure 35	:	Adenosqumous and endometrial carcinoma showing slow cytoplasmic expression of CD133.	131
Figure 36	:	Adenosquamous endometrial carcinoma showing low nuclear expression of Oct4.	132
Figure 37	:	Serous carcinoma (type 2) showing papillary configuration H&E.	132
Figure 38	:	Previous case showing pronounced nuclear atypia H&E.	133
Figure 39	:	Serous carcinoma showing low cytoplasmic expression of Oct4.	133
Figure 40	:	Serous carcinoma showing low nuclear expression of Oct4.	134
Figure 41	:	Clear cell endometrial carcinoma (type 2).	134
Figure 42	:	Clear cell endometrial carcinoma (type 2) showing low cytoplasmic expression of CD133.	135
Figure 43	:	Clear cell carcinoma showing low nuclear expression of Oct4.	135

List of Graphs

Graph No.		Title	Page No.
Graph 1	:	Age of the studied cases.	99
Graph 2	:	Parity of the studied cases.	100
Graph 3	•	Endometrial thickness in the studied cases.	101
Graph 4	:	Different types of endometrial hyperplasia in the studied cases.	102
Graph 5	:	Different types of endometrial carcinoma in the studied cases.	103
Graph 6	:	Grading of endometrial carcinoma in the studied cases.	104
Graph 7	:	Endometrial carcinoma cases according to FIGO staging.	105
Graph 8	:	Low and high expression of CD133 and Oct4 in relation to the grade of endometrial carcinoma.	113
Graph 9	:	Low and high expression of CD133 in relation to pM stage.	116
Graph 10	:	Low and high expression of Oct4 in relation to pM stage.	117

NTRODUCTION

Endometrial cancer (EC) is one of the commonest diagnosed gynecological malignancies affecting women in western countries. It accounts for 6% of all cancers in women worldwide (**Hubbard et al, 2009**) and it represents the seventh leading cause of cancer related death in women (**Kyushima et al, 2002**). In Egypt, tumors of the female genital system represent 4.7% of total malignancies. Endometrial cancer is one of the commonest malignancies in Egyptian women. It accounts for 14.72% of female genital tract malignancies (**Mokhtar et al, 2007**).

The risk of endometrial cancer recurrence ranges from 7.7% to 63.3%, depending on the presence or absence of specific prognostic factors (**Sehouli et al, 2008**).

Cancer stem cells (CSC) is one of these prognostic factors which can be defined as a population of undifferentiated tumorigenic cells responsible for tumor initiation, maintenance, and spread leading to failure of cancer treatment (Pardal et al, 2003).

For these reasons, novel targeted therapies are currently being developed aiming to achieve greater specificity for a selected population of cancer cells (**Sokbom** et al, 2012).

Several markers have been identified as solid cancer stem cell markers. CD133 is a cholesterol interacting pentaglycoprotein (120 transmembrane kd) with span isoforms—CD133-1. CD133-2 and CD133-3. CD133-1 mRNA was more prominent in fetal brain and adult skeletal muscles. CD133-2, is a cell surface antigen recognized by anti-CD133 monoclonal antibodies that are used for isolation of hematopoietic stem cells. Later, it was found on lymphangiogenic endothelial. and myoangiogenic progenitors (Shmelkov et al. 2008). Loss of CD133-2 correlates with gain in a terminal differentiation. Recently, a third variant CD133-3, was found in epididymis and testis (Fargeas et al, 2003).

Although the biological function of CD133 remains unknown, CD133 is recognized as a stem cell marker for normal and cancerous tissue such as bone marrow, brain, kidney, prostate, liver, pancreas, and skin (Shmelkov et al, 2008). Indeed, CD133 is found in cancer stem cells from a variety of solid tumors including endometrium (Schwab et al, 2008), ovary (Silva et al, 2011), brain, prostate, pancreas, melanoma, colorectum, liver and bile duct, and lung (Kim et al, 2010).

On the other hand, the transcription factor Oct-4 (also known as Oct-3 or POU5f1) is a member of the Pit-Oct-Unc (POU) transcription factor family (**Scholer et al, 1990**) that