Improving Quality of Embryos by Stem Cell Application

Thesis submitted at the faculty of medicine, Cairo University in fulfillment for the requirements of the Master Degree in Obstetrics and Gynecology

By

Basma Farouk Hussein

M.B.B.Ch., Cairo University

Research fellow at the National Research Center
Supervisors

Prof.Dr.Mohamed Ehab Salit

Professor of Obstetrics and Gynecology Cairo University

Assist.Prof.Dr.Osama Mahmoud Azmy

Assistant Professor of Obstetrics and Gynecology National Research Center

Assist.Prof.Dr.Dina Sabry Abdel-Fattah

Assistant Professor of Biochemistry, Cairo University

Faculty of Medicine
Cairo University
2010

ABSTRACT

Stem cell has the ability of self renewal or differentiation into more specialized cells. Embryo quality is detected by microscopic assessment of cell number, fragmentation & others. Aim of our study: detect effect of stem cell application on poor quality embryos, either improving or not. Methodology: 50 poor quality embryos divided into 2 equal groups (cases & controls). We added stem cell supernatant on each embryo of the cases After 3 days: improvement of most of the cases, but worsening of most of the controls. Conclusion: stem cells can improve poor quality embryos but genetic diagnosis is required.

Keywords: stem cell-poor quality embryos- Supernatant-improving

Acknowledgement

To the almighty, most gracious and most merciful **ALLAH**, to him above all, humbly, I praise and express all my grateful thanks and gratitude for my family that helped me a lot throughout my life.

I wish to express my deepest thanks to prof. Dr.Mohamed Ehab Salit, professor of Obstetrics and Gynecology at Kasr El-Ainy Faculty of Medicine, Cairo University who gave me the honor of working under his supervision.

I wish to express my deepest thanks and gratitude to Assistant prof. Dr.Osama Mahmoud Azmy, Assistant professor of Obstetrics and Gynecology National Research Center for his kind supervision, continuous encouragement and guidance as well as his moral support throughout work.

I would also like to thank very much Assistant prof. Dr.Dina Sabry Abdel-Fattah, Assistant professor of Biochemistry Kasr ElAiny Faculty of Medicine, Cairo University for her guidance.

I am especially and deeply grateful to **Dr.Somaya Ibrahim** Assistant professor of Community & Preventive medicine for her participation in statistical analysis of our results.

All grateful thanks are to **Dr.Tamer Fouad Taha**, lecturer of Obstetrics and Gynecology at the National Research Center and **Dr.Mamdouh Abdel-Aziz Beibars**, lecturer of Obstetrics and Gynecology at the National Research Center.

I am especially and deeply grateful to **Dr.Wesam Hashem Mohamed**, Embryologist & **Dr.Mohamed Abdel-Rahman**, Embryologist , for their valid participation in fulfillment of the practical part of my thesis.

LIST OF CONTENTS

LIST OF ABBREVIATIONS	II
LIST OF TABLES	V
LIST OF FIGURES	VII
INTRODUCTION	1
AIM OF WORK	3
REVIEW OF LITERATURE	•••••
STEM CELLS	4
ASSISTED REPRODUCTIVE TECHNOLOGY	22
EMBRYO QUALITY	44
PATIENTS AND METHODS	57
RESULTS	65
DISCUSSION	88
SUMMARY	95
CONCLUSION	99
REFERENCES	100
ARABIC SUMMARY	115

LIST OF ABBREVIATIONS

ALCAM Activated leukocyte cell adhesion molecule

ART Assisted reproductive technology

AT Adipose tissue

bFGF Basic fibroblast growth factor

BM Bone marrow

CES Cumulative embryo score.

CFU-F Colony-forming units of fibroblasts

C.M. Conditioned medium

CRP C-reactive protein

DMEM Dulbecco's Modified Eagle's Medium

DNA Deoxyribonucleic acid.

EGF Epidermal growth factor

ESHRE European Society of Human Reproduction and Embryology

Et Embryo transfer

FBS Fetal bovine serum

FDA Food and Drug Administration

Fig. Figure

FSH Follicle stimulating hormone

G-CSF Granulocyte colony-stimulating factors

GIFT Gamete intrafallopian transfer

GM-CSF Granulocyte-macrophage colony-stimulating factors

GnRH-a Gonadotrophin-releasing hormone agonists

GnRH-ant Gonadotrophin-releasing hormone antagonists

GnRH-R Gonadotrophin-releasing hormone receptors

HCG Human chorionic gonadotrophins

HESC Human embryonic stem cell

H.S. Highly significant

ICAM-1 Intercellular adhesion molecule one

ICSI Intracytoplasmic sperm injection

IGF-I Insulin like growth factor one

IGF-II Insulin like growth factor two

IVF In vitro fertilization

LH Luteinising hormone

LIF Leukemia inhibitory factor

MAPCs Multipotent adult progenitor cells

MBTEU Molecular Biology and Tissue Engineering Unit

M-CSF Macrophage colony-stimulating factors

MHC Major histocompatibility complex

MSCs Mesenchymal stem cells

NPBs Nucleolar precursor bodies

NRC National research center

N.S. Non significant

OHSS Ovarian hyperstimulation syndrome

OI Ovulation induction

OPU Ovum pick-up

OR Oocyte retrieval

OS Ovarian stimulation

PAF Platelet activating factor

PB Polar body

PBS Phosphate buffer saline

PCOS Polycystic ovarian syndrome

PID Pelvic inflammatory disease

PLA Pelvic lipoaspirate

PR Pregnancy rates

PN Pronuclei

RCOG Royal College of Obstetricians and Gynecologists

SCF Stem cell factor

S. Significant

SIG Special Interest Group

Tab. Table

TET Tubal embryo transfer

TGF-a Transforming growth factor a

TGF-b Transforming growth factor b

TNF-αI Tumor necrosis factors alpha one

TNF-αII Tumor necrosis factors alpha two.

TGF-\alpha Transforming growth factor-alpha

TGF-β Transforming growth factor-beta

UCB Umbilical cord blood

UK United Kingdom

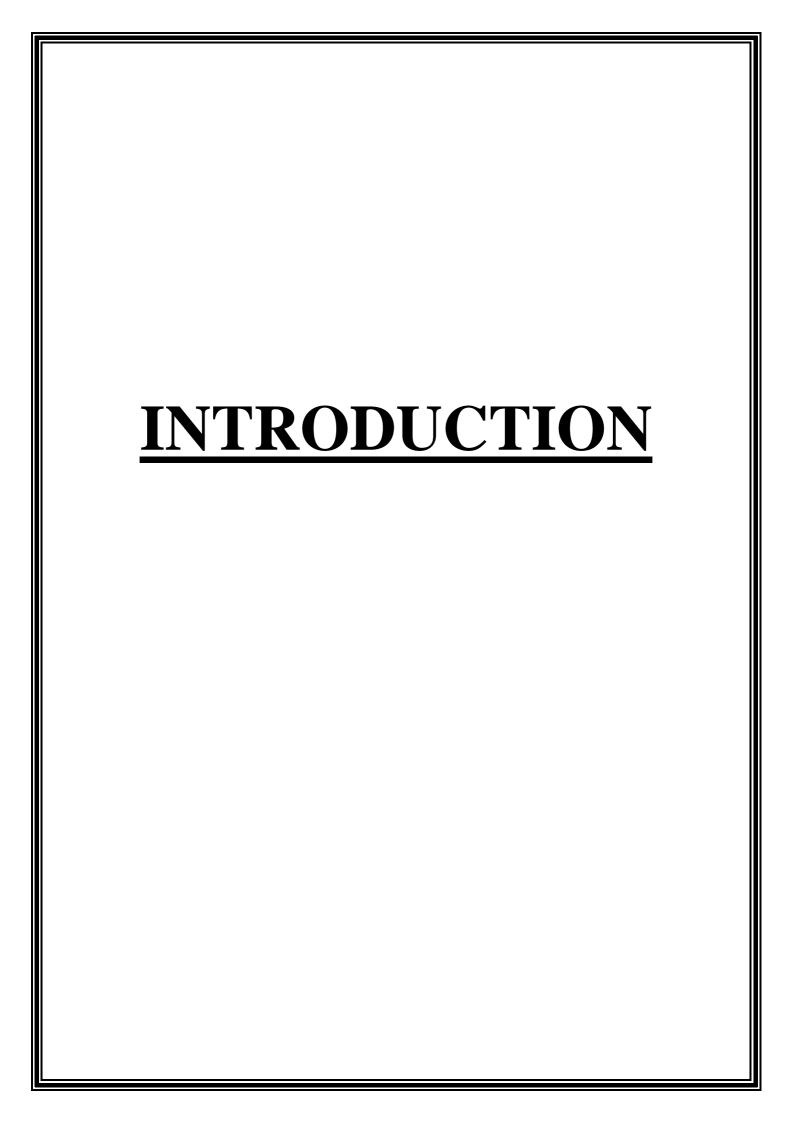
VCAM-1 Vascular cell adhesion molecule one

VEGF Vascular endothelial growth factor

ZIFT Zygote intrafallopian transfer

LIST OF TABLES

TABLE	TADLETITLE	PAGE
NUMBER	TABLE TITLE	NUMBER
1	Phenotypic characteristics of bone marrow MSCs	11
2	Autoantibodies & implantation failure	28
3	Leuven University Fertility Centre classification system of OHSS,together with	30
4	Amino-acid sequences of GnRH analogues	38
5	Demographic characteristics of women attending for ICSI among 2 studied groups	67
6	Percentage of embryos as regards cell number on day 3	68
7	Percentage of embryos as regards cell number on day 6	69
8	Percentage of embryos as regards cell size on day 3	70
9	Percentage of embryos as regards cell size on day 6	71
10	Percentage of embryos as regards cell shape on day 3	72
11	Percentage of embryos as regards cell shape on day 6	73
12	Percentage of embryos as regards cytoplasm clearness on day 3	74
13	Percentage of embryos as regards cytoplasm clearness on day 6	75
14	Percentage of embryos as regards anuclear fragmentation on day 3	76


15	Percentage of embryos as regards anclear fragmentation on day 6on day 3 of	77
16	Percentage of embryos as regards % of fragmentation on day 3 of fertilization	78
17	Percentage of embryos as regards % of fragmentation on day6 of fertilization	79
18	Mean score of cases versus controls on day 3 of fertilization	80
19	Mean score of cases versus controls on day 6 of fertilization	81

LIST OF FIGURES

FIGURE		PAGE
NUMBER	FIGURE TITLE	NUMBER
	Differentiation of mesenchymal stem cells for self-	
	renewing stem cells to generate all mesenchymal cell	
1	lineages	10
	Potential differentiation pathways of bone marrow	
2	multipotent mesenchymal stem cells	14
	Therapeutic use of mesenchymal stem cells in	
	degenerative inflammatory diseases:possible	
3	mechanisms of action	19
	Functions and clinical applications of mesenchymal	
4	stem cells	20
5	The "I" be als " must see 1	20
5	The"lübeck" protocol	39
6	The"French"protocol	40
7	Examples of early cleavage morphologies	47
8	Poor quality embryo with uneven development	49
9	Good quality embryo with even development	49
10	Morphology of the first polar body	52
	Uptake of and secretion of specific nutrients by the	
11	embryo	55
	Mean age of cases versus controls, included in our	
12	study	67

	Number of cases given score 0 or 1, versus controls as	
13	regards cell number on day 3	68
	Number of cases given score 0 or 1, versus controls as	
14	regard cell number on day 6	69
	Number of cases given score 0 or 1, versus controls as	
15	regard cell size on day 3	70
	Number of cases given score 0 or 1, versus controls as	
16	regard cell size on day 6	71
	Number of cases given score 0 or 1, versus controls as	
17	regard cell shape on day 3	72
	Number of cases given score 0 or 1, versus controls as	
18	regard cell shape on day 6	73
	Number of cases given score 0 or 1, versus controls as	
	regard cytoplasm clearness	
19	on day 3	74
	Number of cases given score 0 or 1, versus controls as	
	regard cytoplasm clearness	
20	on day 6	75
	Number of cases given score 0 or 1, versus controls as	
	regard anuclear fragmentation	
21	on day 3	76
	Number of cases given score 0 or 1, versus controls as	
	regard anuclear fragmentation	
22	on day 6	77
	Number of cases given score -1 or 0, versus controls as	
23	regard percentage of fragmentation on day 3	78
	Number of cases given score -1 or 0 ,versus controls as	
24	regard percentage of fragmentation on day 6	79
	I	

25	Mean score of cases versus controls on day 3 of	80
	fertilization	
	Mean score of cases versus controls on day 6 of	
26	fertilization	81
27	Case 1,1 st day(3 rd day of fertilization)	82
28	Case 1,2 nd day(4 th day of fertilization)	82
29	Case1,3 rd day (5 th day of fertilization)	83
30	Case 1.4 th day (6 th day of fertilization)	83
31	Case 2,1 st day(3 rd day of fertilization)	84
32	Case 2,2 nd day(4 th day of fertilization)	84
33	Case 2,3 rd day(5 th day of fertilization)	85
34	Control 1,1 st day(3 rd day of fertilization)	86
35	Control 1,3 rd day(5 th day of fertilization)	86
36	control 2,1 ^{st day} (3 rd day of fertilization)	87
37	Control 2,3 rd day(5 th day of fertilization)	87

INTRODUCTION

Stem cells are rare primitive cells which can be defined by their capacity to self renew as well as to differentiate into one or more mature cell types (Chan et al., 2006).

Mesenchymal stem cells (MSCs) represent a promising tool for new clinical concepts in supporting cellular therapy. Bone marrow (BM) was the first source reported to contain MSCs. However, for clinical use, BM may be detrimental due to highly invasive donation procedure and the decline in MSCs number and differentiation potential with increasing age (Kern et al., 2006).

Studies have demonstrated that the life span of mesenchymal stem cells invitro can be extended and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells without affecting their growth or differentiation potential. The mesenchymal stem cells seem to be hypoimmunogenic and thus allogeneic mesenchymal stem cell transplantation is possible (Kassem et al., 2004).

The quality of embryos from in vitro fertilization is assessed by determining three major components:

- I) cell number,
- II) cell regularity
- III) degree of fragmentation.

There are also other things noted about the embryo appearance, such as multinucleation, presence of vacuoles, granularity, thickness of the shell

around the embryo, etc. Usually, determinations of quality are not made until about 48 hours (or later) after the egg retrieval (Sherban .2008).

The factors affecting embryo quality are combined in numerous ways, often complex, to produce embryo scoring systems to identify potential embryos that would result in pregnancy. As more is learnt about the different aspects of embryo morphology in relation to pregnancy outcome, more criteria can be included in the assessment of embryos, assessment of the oocyte, pronuclear as well as early cleavage status. The decision to use one system over another is often based on the individual laboratory's familiarity and training (Loi et al., 2008).

The true genetic potential of the embryo to continue development is really impossible to measure. However, embryo quality seen under the microscope gives us some reasonable ability to predict the chances for pregnancy after an embryo transfer. Embryos with higher cell numbers and regular appearing cells (blastomeres) and little or no fragmentation have a higher overall chance of implanting than do embryos with fewer cells, more irregularity and more fragmentation. However, because there are many other contributing factors involved that we can not measure, these generalizations do not always apply. Some cycles fail after transferring 3 perfect looking embryos and beautiful babies are born after transferring low grade embryos (Sherban, 2008).