Effect of use of Chalconoids as Antioxidants on Milk Production and on Qualitative and Quantitative Properties of Milk in Zaraibi Goats

"Submitted for the degree of Master of Science As a partial fulfillment for requirements of the master of Science"

"Organic Chemistry"

Manar Ramadan Abd-Elgaber Soliman

Thesis Advisors Prof. Dr. Hassan M. Fawzy Madkour

Professor of Synthetic and Heterocyclic Organic Chemistry, Faculty of Science, Ain Shams University

Dr. Marwa Sayed Salem

Associate Professor of Organic chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Ferial Abdel Rasoul Hassan

Professor of Reproduction Physiology, Animal Production Research Institute, Agricultural Research Center

> Faculty of Science Ain Shams University 2017

Effect of use of Chalconoids as Antioxidants on Milk Production and on Qualitative and Quantitative Properties of Milk in Zaraibi Goats

By

Manar Ramadan Abd-Elgaber Soliman B. Sc. (Major Chemistry)

Thesis Advisors

Prof. Dr. H. M. F. Madkour

Professor of Synthetic & Heterocyclic Organic Chemistry,
Faculty of Science, Ain Shams University

Dr. M. S. Salem

Associate professor of organic chemistry, Faculty of
Science, Ain Shams University

Prof. Dr. Ferial Hassan

Professor of Reproduction Physiology, Animal Production

Research Institute, Agriculture Research Center

Head of Chemistry Department

Prof. Dr. Ibrahim H.A. Badr

Egyptian Journal of Sheep & Goat Sciences, Vol. 11, No. 3, December 2016 & Proceedings Book of the 6th International Scientific Conference on Small Ruminant Production, 6- 10 Nov., 2016, Sharm El Sheikh, Egypt, P: 33-43

Study of Chalcones' Effect on Milk Production in Zaraibi Goats

Hassan M.F. Madkour¹, Ferial Hassan², Marwa S. Salem¹, Manar R. A. Soliman² Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt⁻

²Animal Production Research Institute, Agriculture Research Center, Dokki, Cairo, Egypt.

ABSTRACT

The present study aimed to evaluate the effect of chalcones on milk production and qualitative properties of milk in Zaraibi goats. Five chalcones have been synthesized *via* Clasien - Schmidt condensation under alkaline conditions. Structures of the synthesized chalcones have been confirmed by their melting point (mp), Infrared spectrum IR and Proton Nuclear Magnetic Resonance (¹H-NMR) spectra. Total antioxidant capacity (TAC) of the synthesized compounds were measured according to Phosphomolybdenum method, and the results indicated that, chalcone [1-(benzofuran-2-yl)-3-(4-methoxyphenyl)-prop-2-en-1-one] (V) has the highest antioxidant activity among the five synthesized chalcones.

Sixteen dairy Zaraibi goats have been divided into three groups according to their parity, milk yield, body weight and age. G1 (4 animals) served as control group and was fed the basal diet, G2 (6 animals) was fed the basal diet + 250 mg/head/day of chalcone V and G3 (6 animals) was fed the basal diet + 500 mg/head/day of chalcone V for a period of 90 days. Results showed insignificant increase in milk yield of the three groups (1.07, 1.07 and 1.14 L, respectively), in milk protein (2.80, 2.87 and 2.92%, respectively) and milk somatic cells (SCC) (956.4*10³, 981.1*10³ and 1181.7*10³ cells/ml, respectively). While there were insignificant decrease in milk fat of the three groups (3.70, 3.45 and 3.31%, respectively), milk lactose (4.45, 4.45 and 4.36%, respectively) and total milk solids (11.67, 11.47 and 11.29%, respectively). Total antioxidant capacity of blood serum was insignificantly higher in G2 than G1 and G3 (2.86, 3.25, 2.83 mM/L, respectively). Findings indicate insignificant response of using chalcones on milk production and qualitative properties of milk as it may decomposed in the rumen or not absorbed by the intestine due to its large particles.

Key words: Chalcone, Antioxidant, Milk production, milk quality, Zaraibi goats.

ISSN: 2090-0368 - Online ISSN: 2090-0376 (Website: http://www.easg.eg.net)

Acknowledgement

I would like to thank the **Almighty Allah** for giving me the strength and the ability to work towards the completion of this study.

I would like to express sincere gratitude and appreciation to my study leader **Prof. Dr. Hassan M. Fawzy Madkour,** Professor of Organic chemistry, Faculty of Science, Ain Shams University, for his guidance, effort, assistance and support in my work to complete the study.

I would like to express my deepest appreciation, heartfelt thanks and indebtedness to **Dr. Marwa Sayed Salem**, Associate Professor of Organic chemistry, Faculty of Science, Ain Shams University, for her great efforts, patience, assistance, support and guidance during the study.

I would like to express my sincere gratitude and heartfelt thanks to **Prof. Dr. Ferial Abdel Rasoul Hassan,** Professor of Reproduction physiology, Sheep and Goats Department, Animal Production Research Institute, for her effort, time, helpful advices and valuable opinions.

I would like to express my deep appreciation and indebtedness to **Prof. Dr. Adel Aboul-Naga** for his moral and financial support and **Prof. Dr. Mohammed El-Shafie** for his guidance and endless support while working on the practical part.

Also, thanks are extended to **Prof. Dr. Tarek Ashmawy** who assisted in the field work and sampling, **Dr. Mosad A. Ghareeb** who has helped in measuring the TAC of the synthesized chalcones and my colleagues **Sherif Melak** and **Taha Hosni** who have helped in the statistical analysis.

List of Tables

No.		Page
1	Total antioxidant capacity (means \pm S.D) of	<i>C</i> 1
	the synthesized chalcones	64
2	Least squares means (kg) ± SE of daily milk	
	yield as affected by treatment, time and the	
	interaction between them	68
3	Least square means ± SE of milk fat % as	
	affected by treatment, time and the interaction	
	between them	72
4	Least square means \pm SE of milk Protein % as	
-	affected by treatment, time and the interaction	
	between them	75
_		13
5	Least square means \pm SE of milk Lactose % as	
	affected by treatment, time and the interaction	
	between them	78
6	Least square means \pm SE of total milk solids	
	(TS) % as affected by treatment, time and the	
	interaction between them	81
7	Least square means ± SE of solid non-fat	
•	(SNF) % as affected by treatment, time and the	
	•	0.4
	interaction between them	84
8	Least square means \pm SE of somatic cell count	
	(SCC) as affected by treatment, time and the	
	interaction between them	87

List of Figures

No.		Page
1	IR spectrum of Chalcone 3	50
2	¹ H-NMR spectrum (DMSO) of Chalcone 3	51
3	¹ H-NMR spectrum (DMSO + D ₂ O) of Chalcone 3	52
4	Mass spectrum of chalcone 3	53
5	Mass spectrum of chalcone 3	54
6	IR spectrum of chalcone 4	57
7	¹ HNMR- spectrum of chalcone 4	58
8	Mass spectrum of chalcone 4	59
9	Mass spectrum of chalcone 4	60
10	IR spectrum of chalcone 5	62
11	Total antioxidant capacity of the synthesized compounds measured as the number of ascorbic	
	acid	65
12	Effect of chalcone on the average daily milk yield	
	of Zaraibi does	69
13	Effect of sampling time on the daily milk yield of	
	Zaraibi goats	69
14	Effect of sampling time on Fat (%)	73
15	Effect of sampling time on protein (%)	76
16	Effect of sampling time on milk lactose (%)	79
17	Effect of sampling time on total milk solids (%)	82
18	Effect of sampling time on SNF (%)	83
19	Effect of sampling time on milk SCC	86
20	Effect of sampling time on TAC of blood serum	91

List of Abbreviations

Abbreviations

Meaning

¹**H-NMR** Proton Nuclure Magnetic Resonance

AAE Ascorbic Acid Equivelent AOA Antioxidant Activity

BHA Butylated Hydroxy Anisole

CNS Coagulase Negative Staphylococci

DMIDmy Matter IntakeDMSODimethyl SulphoxideDPPHDiphenyl Picryl Hydrazile

FCM Fat Corrected Milk

IC 50% Inhibation Concentration of 50% of cells

IMI Intra- Mammary Infection

IR Infrared

m.p. Melting Point

MRSA Methicillin Resistant Staphylococcus Aurers

MTT Microculture Tetrazolium Test

MW Microwave

NSS Nigelaa Sativa Seeds

PMN Polymorphonuclear Neutrophiles

PTC Phase Transfer Catalyst

r.t. Room Temperture

SAS Statistical Analysis System

SCC Somatic Cell Counts
SNF Solids Non- Fat
SPP Streptococcus spp
SSA Silica Sulphoric Acid

TAC Total Antioxidant Capacity
TLC Thin Layer Chromatography

TMS Tetra- Methyl Silaine
TMY Total Milk Yield

TMY 90 Total Milk Yield during the first 90 days

TS Total Solids

Contents

_		1
	immary	i
	troduction	1
1.	Synthesis of chalcones	1
	1.1. Base catalyzed	2
	1.1.2. Catalyzed by KOH	2
	1.1.3. Catalyzed by Ba(OH) ₂	3
	1.2. Acid Catalyzed	4
	1.2.1 Catalyzed by boron trifluoride(BF ₃)	5
	1.2.2. Catalyzed by H ₂ SO ₄	5
	1.2.3. Catalyzed by HCl	5
	1.2.4. Catalyzed by silica/ H ₂ SO ₄	6
	1.3. Metal oxide catalyzed	6
	1.4. Organometalic Synthesis of Chalcones	7
	1.4.1. Synthesis of chalcones via Suzuki reaction	8
	1.5. Microwave assisted synthesis of chalcones	8
2.	Reactions of chalcones	9
	2.1. Oxidation reactions of chalcones	1
	2.2. Epoxidation reaction of chalcone	1
	2.3. Addition Reactions of chalcones	1
	2.3.1. Nucleophilic Addition reactions	1
	2.3.1.1. Michael Addition Reaction	1
	2.3.1.2. Reaction of chalcones with ortho-aminothiophenol	1
	2.3.1.3. Bromination of chalcones	1
	2.3.3. Diels Alder Reaction	1
3.	Chalcones Biological Activities	1
	3.1. Antimalaria activity	1
	3.2. Anticancer activity	1
	3.3. Anti-inflammatory activity	1
	3.4. Antibacterial activity	1
	3.5. Antifungal activity	1
	3.6. Antioxidant activity	2
4.	Economical Importance of Goats	2
	Zaraibi Goats	2
	Milk production	2
	6.1. Factors affecting milk yield	2
	6.1.1. Parity	2
	6.1.2. Season of kidding	2
	6.1.3. Litter size	2

6.1.4. Body weight of doe at kidding	30
6.2. Factors affecting milk composition	31
6.2.1. Parity	31
6.2.2. Season of kidding	32
6.2.3. Litter size	33
7. Factors affecting somatic cell counts (SCC) in milk of dairy goats	34
7.1. Infectious factors affecting SCC	34
7.2. Non- infectious factors affecting SCC	36
7.2.1. Effect of parity on SCC	37
7.2.2. Effect of stage of lactation	37
7.2.3. Effect of season of lactation on SCC	38
7.2.4. Effect of milking type	39
8. Feed supplements as antioxidants in dairy animals' rations	40
8.1. Effect of antioxidants supplementation on milk yield, milk composition	40
and milk SCC	
Results and Discussion	42
1. Synthesis of chalcones	46
2. Total antioxidant capacity of the synthesized compounds	46
3. Milk yield	63
4. Milk composition.	65
4.1. Milk fat %	70
4.2. Milk protein %	70
4.3. Milk lactose %	73
4.4. Total milk solids %	76
4.5. Solids not fat %	79
4.6. Milk somatic cell counts (SCC)	82
5. Total antioxidant capacity of blood serum	84
Experimental	87
General Remarks	92
1. General method for synthesis of 1,3-diaryl-prop-2-en-1-one	92
2. Total antioxidant capacity (TAC) of the synthesized chalcones	93
3. Field work	95
3.1.Animals and feeding	96
3.2. Milking	97
3.3. Samples and data collection	98
3.3.1. Milk samples	98
3.3.1.1. Chemical analysis of milk	98
3.3.2. Blood samples	99
3.4. Statistical analysis.	100
References	100
Arabic summary	102

Am of The Work

Abstract

The present study aims to evaluate the effect of chalcones on milk production and qualitative properties of milk in Zaraibi goats. Five chalcones have been synthesized Schmidt condensation via Clasienunder alkaline conditions. Structures of the synthesized chalcones have been confirmed by their melting point (m.p.), Infrared spectrum IR and Proton Nuclear Magnetic Resonance (¹H-NMR) spectra. Total antioxidant capacity (TAC) of the synthesized compounds indicated that chalcone 5 [1-(benzofuran-2-yl)-3-(4-methoxyphenyl)-prop-2-en-1-one] has the highest antioxidant activity among the five synthesized chalcones.

Sixteen dairy Zaraibi goats have been divided into three groups according to their parity, milk yield, body weight and age. G1 (4 animals) serves as control group and was fed the basal diet, G2 (6 animals) was fed the basal diet + 250 mg/head/day of chalcone 5 and G3 (6 animals) was fed the basal diet + 500 mg/head/day of chalcone 5 as oral pills once daily for a period of 90 days. The results showed insignificant increase in G3 than either G1 and G2 in milk yield (1.14, 1.07 and 1.07 Kg, respectively), in milk protein (2.92, 2.80 and 2.87 %, respectively), and in milk somatic

cells (SCC) (1181.7*10³, 956.4*10³ and 981.1*10³ cells/ml, respectively). While there are insignificant decrease in G3 than either G1 and G2 in milk fat (3.31, 3.70 and 3.45 %, respectively), milk lactose (4.36, 4.45 and 4.45%, respectively) and total milk solids (11.29, 11.67 and 11.47 %, respectively). Total antioxidant capacity of blood serum was insignificantly higher in G2 (3.25 mM/L) than G1 and G3 (2.86 and 2.83 mM/L, respectively). Findings indicate insignificant response of using chalcones on milk production and qualitative properties of milk as it may be decomposed in the rumen or not be absorbed by the intestine due to its large particles.

SUMMARY

Summary

Several reasons prompted us to use chalcones as antioxidant supplements in the dairy goat rations. Firstly, chalcones represent an important group of the polyphenolic family, which includes large number of naturally occurring molecules. In addition, chalcones possess an interesting spectrum of biological activities including antioxidant, antibacterial, anticancer, cytotoxic and immunosuppressive potential. The last and the most important reason is that chalcones can be synthesized *via* simple and efficient methods as Clasien-Schmidt condensation.

Improving the qualitative and quantitative properties of dairy goats' milk has a large number of merits. One of these merits is that milk of dairy goats improves the diet of many rural families. Also, it has a great nutritional value, since it is suitable for children who are allergic to cows' milk, patients with ulcers and sick elderly people.

The present study aimed to evaluate the effect of chalcones on milk production and qualitative and quantitative properties of milk in Zaraibi goats.

Five chalcones have been synthesized via Clasien-Schmidt condensation between acetophenone and benzaldehyde under alkaline conditions. Structures of the synthesized compound have been confirmed on the bases of their melting points, IR and ¹H-NMR spectrum. Antioxidant activity of the synthesized compounds has been measured phosphomolybdenum Results according to method. (1-(benzofuran-2-yl)-3-(4indicated that chalcone methoxyphenyl)-prop-2-en-1-one) (5) has the highest antioxidant capacity among the synthesized compounds. That is why we used chalcone **5** in our experiment.

Sixteen dairy Zaraibi goats have been chosen out of the flock and divided into three groups according to their milk yield, age, body weight of doe and parity. G1 (4 animals) served as control group and received the control ration (25% concentrate feed mixture and 75 % green berseem). G2 and G3 (6 animals each) served as experimental groups and received control ration besides 250 and 500 mg of chalcone 5, respectively. Doses have been administrated as oral pills once daily for 90 days.

Milk yield was measured and recorded biweekly. Milk samples have been collected once monthly at the 1st day of lactation (zero time, before treatment) and every 30 days till the end of the experiment. Milk samples were analyzed for fat, protein, lactose, total milk solids and solids not fat percentages using Milko-scan (133 BN. FOSS