Pharmacokinetics and Pharmacodynamics effects of Everolimus and Sorafenib combination: Impact of doses and sequence of administration on the combination

Thesis

Submitted in Partial Fulfillment of Ph.D Degree of Pharmaceutical Science

By

Mevidette Adel El Madani

M.Sc. of Pharmacy

Under Supervision of

Prof. Osama Ahmed Badary

Professor of Clinical Pharamcy Faculty of Pharmacy – Ain Shams University

Prof. Fbtehal Fl Demerdash Zaki

Professor of Pharmacology and Toxicology Faculty of Pharmacy – Ain Shams University

Prof. Siham Mostafa El Shenawy

Professor of Pharmacology Pharmacology Department – Medical Devision National Research Center

Dr. Benoit You

Oncologist, at Hospices Civils de Lyon Investigational Center for Treatments in Oncology and Hematology

Prof. Michel Tod

Profoessor of Pharmacology
At Research unit "Therapeutic Cibling in Oncology",
Croix-Rousse Hospital - University Lyon I

Faculty of Pharamcy
Ain Shams University (Cairo)

Faculty of Medicine Claude-Bernard University (Lyon)

2017

Acknowledgment

I'd like to express my respectful thanks and profound gratitude to **Dr. Benoît You,** my principle supervisor in France, who gave me the chance to join his team in EMR 3738 Laboratory at Centre Hospitalier, Lyon Sud. I am very grateful for the learning experience that I got by working with his team, who were always keen to deliver the best of their scientific knowledge. I also appreciate all the kind advices brought to me by himself that gave me strength and motivation to push my limits.

I am also delighted to express my deepest gratitude and thanks to **Pr. Michel Tod,** my co-supervisor in France for his keen guidance, that helped me to apprehend the scientific context of the project. I am also very thankful for his kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I wish to introduce my deep respect and thanks to **Olivier Colomban,** biostatistician at EMR 3738 laboratory for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Catherine Barrois**, Head of clinical research associates at Centre Hospitalier, Lyon Sud and her team for their great help and for getting me an access to patient's data used in the analysis of the current work.

I would like also to express my deep appreciation to **Emilie Hénin**, for her active participation in the project and for her continuous scientific support throughout this work.

A special thanks is addressed to **Pr. Claire Rodriguez-Lafrasse** and **Pr. Jérôme Guitton** for their cooperation in this work.

.

I would like to express my hearty thanks to my family in Egypt and to all my clolleagues, **Mélanie**, **Philippe**, **Klervi and Olivia** for their support till this work was completed.

I owe a special thanks to **Fabiene and Raymonde** for giving me a great moral and for their support in all administrative tasks.

Finally, I would like to thank my supervisors in Egypt, **Prof.**Osama Badary, Prof. Ebtehal EL-Demerdash and Prof.Siham

EL-Shenawy for their encouragement during writing the current thesis and their valuable advices throughout the work that made me moving forward

Last but not least my sincere thanks and appreciation to all patients participated in this study.

List of Contents

	Title	Page No.
List of Ta	bles	5
List of Fig	gures	7
List of Ab	breviations	10
Introducti	on	1
Review of	Literature	
I-	Hypothesis	17
II-	Rationale	18
III-	Drugs acting on cancer signaling pathways RAS-FERK and P3K-AKT-mTOR	
IV-	Rationale for the combination of everolimus and sorafenib	32
V	Analysis of the literature data	38
VI-	Thesis objectives	40
Aim of the	e Work	42
Patients a	nd Methods	44
Results		80
Discussion	n	145
Summary	and Conclusion	163

List of Tables

Table No.	Title Po	age No.
Table (1):	Previous early phases clinical trials of everolima	ıs
	and sorafenib	
Table (2):	Drug dosing and drug dosing levels in the	ie
	EVESOR trial.	
Table (3):	Conventional 3+3 dose escalation rule for	
	schedules C and D	
Table (4):	Pharmacokinetic sampling schedule	
Table (5):	Sampling strategies of peripheral bloo	od
	mononuclear cells (PBMCs) and solub	le
	markers of angiogenesis for each dosing	
	schedule	
Table (6):	Specific dose modifications for hematologic	
	adverse events (for within a cycle or at the	ie
	beginning of a cycle)	
Table (7):	Dose modifications for non-hematological	al
	toxicities.	74
Table (8):	Specific dose modifications for diarrhea	75
Table (9):	Specific dose modifications for hand-foo	ot
	syndrome	76
Table (10):	Specific dose modifications for non infectiou	ıs
	pneumonitis	77
Table (11):	Patient demographics and clinical characteristic	es81
Table (12):	Treatment related adverse events	88
Table (13):	Criteria of gravity of serious adverse events	92
Table (14):	Analysis of serious adverse events by system	
	organ class (SOC)	93
Table (15):	Compartmental estimated PK parameters for	or
	sorafenib and everolimus	
Table (16):	PK interaction between different treatment	
	groups association of sorafenib and everolimus	104
Table (17):	Comparison of biological toxicities* between	
	different treatment schecules	106
Table (18):	Comparison of clinical toxicities* between	n
	different treatment schedules	106

Table (19):	Comparison of gastric toxicities* between	
	different treatment schedules	106
Table (20):	Comparison of cutaneous toxicities* between	
	different treatment schedules	107
Table (21):	Comparison of uncommon toxicities* between	
	different treatment schedules	107
Table (22):	Correlation between toxicities subclasses and	
, ,	estimated PK parameters	108
Table (23):	Correlation between PK parameters and clinical	
, ,	response	134
Table (24):	Correlation between biomarker concentration	
, ,	and clinical response	135
Table (25):	Correlation between biomarker slope and	
,	clinical response	138
Table (26):	Comparison between different administration	
	schedules and area under the curve of tumor	
	biomarkers	140
Table (27):		10
14010 (27)	schedules and slopes of tumor biomarkers	142
	self-cares and stopes of taillor stollarkets	1 12

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Relationships between all parameters (dosing schedules, pharmacok pharmacogenomic, pharmacodynamic and ceffects) required to optimize study	inetic, linical drug
Figure (2):	administrations	PI3K) on cell
Figure (3):	Description of the RAS-RAF-ERK and AKT-mTor signaling pathways	PI3K-
Figure (4):	Sorafenib targeting dysregulated signals in cell, Endothelial (vascular or lymphatic ce	tumor ell) or
Figure (5):	pericyte	F-ERK using
Figure (6):	combination of everolimus and sorafenib Design of EVESOR trial during cycle 1	
Figure (7):	Frequency of adverse events in different treat	atment
Figure (8):	schedules A, B, C and D	afenib
Figure (9):	Diagnostic goodness-of-fit plots for everolimus structural model	the
Figure (10):	Diagnostic goodness-of-fit plots for the sor structural models, showing weighted resversus time (hours) after dose	afenib siduals
Figure (11):	Diagnostic goodness-of-fit plot for the every structural models, showing weighted res	olimus siduals
Figure (12):	Visual predictive check for the structural mosorafenib with the median, 75 th , and 25 th pre	odel of
Figure (13):	and observed percentiles	odel of l 25 th

Figure (14):	Individual plots: everolimus vs time (Hr) 101
Figure (15):	Individual plots: sorafenib vs Time (Hr)
Figure (16):	VEGF biomarker profile of schedule A dosing
	regimen describing serum VEGF concentration
	(pg/ml) measured at different time points of
	sampling taken during cycle 1 and cycle 2 110
Figure (17):	VEGFR1 biomarker profile of schedule A dosing
	regimen describing serum VEGFR1 concentration
	(pg/ml) measured at different time points of
	sampling taken during cycle 1 and cycle 2 113
Figure (18):	VEGFR2 biomarker profile of schedule A dosing
	regimen describing serum VEGFR1 concentration
	(pg/ml) measured at different time points of
F: (10)	sampling taken during cycle 1 and cycle 2
Figure (19):	ERK Total biomarker profile of schedule A
	dosing regimen describing serum ERK Total
	concentration (pg/mg) measured at different time points of sampling taken during cycle 1 and cycle
	2
Figure (20):	ERK phophorylated biomarker profile of schedule
Figure (20).	A dosing regimen describing serum ERK
	phophorylated concentration (mUnits/mg protein)
	measured at different time points of sampling
	taken during cycle 1 and cycle 2
Figure (21):	AKT Total biomarker profile of schedule A
3	dosing regimen describing serum AKT Total
	concentration (pg/mg protein) measured at
	different time points of sampling taken during
	cycle 1 and cycle 2
Figure (22):	pAKT biomarker profile of schedule A dosing
	regimen describing serum p AKT concentration
	(pg/mg protein) measured at different time points
F: (22)	of sampling taken during cycle 1 and cycle 2
Figure (23):	p70S6K biomarker profile of schedule A dosing
	regimen describing serum p70S6K concentration
	(ng/mg protein) measured at different time points
Figure (24):	of sampling taken during cycle 1 and cycle 2
11guit (24):	baseline in target lesion measurement by RECIST
	(Response Evaluation Criteria in Solid Tumors)
	(Response Diamanon Chieffa in Dona Tumors)

	guidelines for patients at different administration
	Schedule
Figure (25):	Boxplot correlating tumor biomarker
	concentrations and clinical response
Figure (26):	Boxplot correlating tumor biomarker slope and
	clinical response
Figure (27):	Boxplot comparing different administration
	schedules and area under the curve of tumor
	biomarkers
Figure (28):	Boxplot comparing different administration
	schedules and slopes of tumor biomarkers
	-

List of Abbreviations

Abb.	Full term
([18F] FLT)-PET	[18F]-fluorodeoxy-L-thymine
(AUC _T)	Areas under the concentration versus time curves within the dosing interval
4E-BP1	eIF4E-binding proteins
AEs	
AGT	Human O^6 -alkylguanine-DNA alkyltransferase
AKT Total	Protein kinase B
	Serine/Threonine Kinase 1
	Area under the curve
	Confidence Interval
	Apparent oral clearance
	Peak concentration
	Complete response
	Case report form
	Common terminology criteria of adverse events
	Coefficient of variation
	Cytochrome P450 3A4
DCE-MRI	Dynamic contrast enhanced magnetic resonance
	imaging.
	Dose limiting toxicity
	Epidermal growth factor receptor
	European medical agency
	Total extracellular signal regulated kinase
FOCEI	First order conditional estimation method with an
GT1 5 5	interaction option.
	Genetically engineered mouse model
	Hepatocellular Carcinoma
	Human epidermal growth factor receptor2
	Hypoxia-inducible factor
	Ideal Body Weight
	Inhibitory concentration 50
	Inter-occasion variability
	Absorption rate constant
KRAS	V-Ki-ras2 Kirsten rat sarcoma viral oncogene
	homolog

LC-MS/MS	Liquid chromatography MS/MS
	Modeling and simulation
	Model based drug design
	Mitogen activated protein kinase
	Morris Hepatoma
	Molecular profiling
	Microtubule-targeting agents
	Maximum tolerated dose
	Mammalian target of rapamycin
	Non-linear mixed effect modeling
	Non small cell lung cancer
	Optimal biological dose
	Phosphorylated p70 ribosomal protein S6 kinase
	Phosphorylated protein kinase B
PBMCs	Peripheral Blood Mononuclear cells
	Pharmacodynamics
	Patient derived xenografts
	Phosphorylated extracellular signal regulated kinase
	Progression free survival
	Pharmacologically guided dose escalation
PgP	Glycoprotein P
PI3K	Phosphatidylinositol 3-kinase
PIK3CA	Phosphatidylinositol-4,5-Bisphosphate 3-Kinase
	Catalytic Subunit Alpha
PK	Pharmacokinetics
PK-PD	Pharmacokinetics-pharmacodynamics
PR	Partial response
PtdInsP3	Phosphatidylinositol 3,4,5-trisphosphate
PTEN	Phosphatase and tensin homolog
Q/F	Intercompartimental clearance.
	Research and development
RAF	Serine/threonine specific protein kinases
RAS	Reticular activating system
RP2D	Recommended phase 2 dose
RSE	Relative standard error
RTK	Receptor tyrosine kinase
SAEs	Serious adverse event
SIGMA	Exponential residual error
	System Organ Class
SUSARs	Suspected unexpected serious adverse reactions

TRAIL	. Tumour Necrosis Factor-Related Apoptosis-Inducing
	Ligand
UGT1A1	. UDP-glucuronosyltransferases 1A1
UGT1A9	. UDP-glucuronosyltransferases 1A9
V2/F	. Peripheral volume of distribution
Vd _{central}	. Central volume of distribution
VEGF	. Vascular endothelial growth factor
VEGFR1	. Vascular endothelial growth factor receptor 1
VEGFR2	. Vascular endothelial growth factor receptor 2
VPC	. Visual predictive check

Introduction

The translation of cancer research to successful clinical application has been proved to be very challenging over the past decade. The attrition rate of drug development remains high despite the efforts and the financial investments that have been brought by many different parties including scientists, researchers and pharmaceutical companies.

Only 5% of agents that have anticancer activity in preclinical development are licensed after demonstrating sufficient efficacy in phase III testing, which is much lower than, other diseases. This issue involved also many new cancer agents including microtubule-targeting agents (MTA) that were withdrawn or suspended with 40–50% of development programs being discontinued even in clinical Phase III ^{1,2}.

Diverse reasons were reported as factors contributing for the high attrition rate of anticancer agents³. The concepts used for development of cytotoxic drugs were not adequate for new targeted agents: toxicity based escalation trials, MTD. Therefore, limitations and major challenges for the research based drug development could be summarized in the following:

Poorly predictive preclinical models in cancer research: the limitations of preclinical tools such as inadequate cancer-cell-line and mouse models might explain the challenging mission of the scientists to make a discovery that will have an impact in the clinic ⁴. Despite the progress of genetically engineered mouse model (GEMMs) and patient derived xenografts (PDXs), these models still not widely implemented ⁵. However, recently, GEMMs have been used to

identify the importance of mTOR and EGFR inhibitors in neuroendocrine cancers, leading to the successful translation of mTOR inhibitors into clinical practice in this tumor type ^{6,7}. PDXs are also increasingly used to guide personalised therapy ^{8,9}.

- Lack of reliability of published data: An analysis by Prinz F et al., 2011 was based on input received from 23 scientists and collected data from 67 projects, revealed that in almost two-thirds of the projects there were inconsistencies between published data and in-house data. This concern has been addressed based on what some scientists have claimed about the presentation of specific experiments that supported their underlying hypothesis which were not reflective of the entire data set. Also, data were not routinely analyzed by investigators blinded to the experimental versus the control group. On the other hand, in studies for which findings could be reproduced, authors had paid close attention to controls, reagents, investigator bias and describing the complete data set 10.
- Starting dose determination: endpoints based on optimal biological doses (OBD) were used to determine the recommended phase 2 dose (RP2D) for several FDA approved agents, such as bevacizumab, imatinib and vismodegib, as they didn't reach an established MTD in the phase I trial. Accordingly, a new approach was set using PK or PD as an endpoint to determine biologically active dose in preclinical experiments. This could be applied alongside with preclinical toxicology data to inform starting dose decisions. This binomial approach has the potential to reduce the number of dose escalations while keeping an optimised benefit /risk ratio. A number of

conditional and accelerated approvals have been granted based on phase II data relying on patient benefit ¹¹ ¹².

- Patient selection: Multiple genomic aberrations that drive oncogenesis may act as treatment targets. Therefore, the identification of a sufficient number of patients with a specific molecular aberration can significantly slow clinical trial accrual as the majority of these abnormalities have been reported with low frequency. In these cases multi-center studies with frequent communications investigator sites should ameliorate these limitations. Geographic heterogeneity due to spatial variations in molecular aberrations has been demonstrated within a single tumor, or between different lesions. Multiple tumor biopsies, ultra deep sequencing and non-invasive tumor imaging could potentially overcome the limitations of geographic heterogeneity ¹³⁻¹⁵.
- The concept of target-based drug discovery with the related complexity of target selection: the reliance on standard criteria for evaluating tumour response and the challenges of selecting patients prospectively also play a significant part in the success rate of a new molecule to be translated to clinic ¹⁶. The disappointing results in the clinic produced by some anticancer agents like mitotic kinases could be partially related to the lack of a balanced benefit /risk ratio as their efficacy was at the expense of high toxic effects. This might be explained by a non 'druggable' tumor cells which means that the activity of the key target of the anticancer agents was not inhibited in the tumor cells¹⁷.