

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Novel Frequency-Domain-Based Methodology for Signal Integrity

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Electrical Engineering (Electronics Engineering and Electrical Communications)

by

Ahmed Saeed Abdelsamea Sayed

Master of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Helwan University, 2010

Supervised By

Prof. Hani Fikri Ragai Prof. Yehea Ismail Mohamed Assoc. Prof. Alaa Elrouby

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Name: Ahmed Saeed Abdelsamea Sayed

Novel Frequency-Domain-Based Methodology for Signal Integrity

Degree: Doctor of Philosophy in Electrical Engineering

Examiners' Committee

Name and Affiliation	Signature
Prof. Mohamed I. Eladawy Electronics and Communications , Helwan University	
Prof. Abdelhalim Abdelnaby Zekry Electronics and Communications , Ainshams University	
Prof. Hani Fikri Ragai Electronics and Communications , Ainshams University	

Statement

This thesis is submitted as a partial fulfilment of Doctor of Philosophy in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Ahmed Saee	d Abdelsamea Sayed
Signature:	
	17 May 2017

Researcher Data

Name : Ahmed Saeed Abdelsamea Sayed

Date of birth : 21-09-1980

Place of birth : Cairo

Last academic degree : Master of Science in Electrical

Engineering

Field of specialization : Electronics and Communication

University : Helwan University

Date of issued degree : 2010

Current job : Assistant Lecturer, Future

University in Egypt

Abstract

Gordon Moore expected that the number of components will increase exponentially by the years. In agreement, the International Technology Roadmap for Semiconductors expects that the clock frequency will continue to increase while the feature size minimizes to smaller size. Despite that the performance of digital systems can be enhanced by improving several aspects including the increase of clock frequency, signal integrity effects begin to have a significant impact on system performance, which have been neglected at low frequencies. Therefore, these interconnect is no longer an ideal transparent wire and their behaviour that dependent on frequency will impact the propagation of signals by introducing glitches, delays and distortions. Historically, typical analysis of signal integrity problems, such as reflections, ringing, signal loss, distortion, delay, etc., is performed in time domain and so it cannot account for the elements with frequency-dependent behaviour in a direct way. Therefore, transforming signal and system specifications in the time domain to the frequency domain and performing the complete frequency-domain-based signal integrity analysis would simplify the process and make it more efficient, faster and more intuitive. The work presented in this thesis is to quantify the relationship between time domain aberrations of the clock signal and their frequencydomain characteristics. A point-to-point communication model is built on Keysight's Advanced Design System to justify these models.

Keywords: Clock Signal, Frequency Domain, High Frequency, Ringing, Signal Integrity, Time Domain.

Acknowledgment

Undoubtedly I owe to my advisers, Prof. Hani Fikri, Prof. Yehea Ismail and Prof. Alaa Elrouby a great deal. They have greatly supported me under every possible aspect of this long and difficult journey. They have been continuous source of motivation, and inspiration. They have provided guidance, technical criticism, valuable feedback. There is a fourth person, Prof. João Canas Ferreira (INESC TEC, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal), that I truly feel I can address him as coadviser for this work. Two important contributions of this thesis have originated from a mobility program at Sistemas e arquitetura laboratório, DEEC, Faculdade de Engenharia, Universidade do Porto. Most importantly, the still ongoing interactions with Prof. Ferreira after that mobility have brought to my work both deep theoretical understanding as well as attention to practical implications.

I would like to thank the PhD jury members, Prof. Mohamed ELadawy (Helwan University), who has reviewed with overwhelming attention and criticism my thesis, and Prof. Abdelhaleem Zikry (Ainshams University), who has provided valuable feedback during my qualifying exam and during my dissertation talk. The discussion with Prof Mohamed Aboelatta (Ainshams University) was very helpful in both the scientific and administrative aspects. Hazim Ali (CISTER) and Mohamad Abdellatif (BUE) have contributed to this work with interactions and technical discussions through the mobility journey.

Contents

St	atem	ent		iii
A l	bstra	ct		vii
A	cknov	wledgements		xi
1	Intr	roduction		1
	1.1	Background		1
	1.2	Simulation techniques for Signal	Integrity	9
		1.2.1 3D Field Solver		9
		1.2.2 Transmission-Line-Based	Simulators	11
	1.3	Motivation		12
	1.4	Thesis Structure		14
2	Free	quency-Domain Translation of C	ock Signal	15
	2.1	Introduction		15
	2.2	Frequency Analysis Techniques		16
	2.3	Clock Signal Modeling		20
		2.3.1 The Ideal Clock		21
		2.3.2 Clock Skew		23
		Skew Definition		23

			Skew Modeling	27
		2.3.3	Clock Ringing	31
			Ringing Definition	31
			Ringing Modeling	34
		2.3.4	Rise and Fall time	41
			Rise/Fall Time Definition	41
			Rise/Fall Time Modeling	43
		2.3.5	Jitter	47
			Jitter Definition	47
			Jitter Modeling	50
	2.4	Sumn	nary	60
3	Syst	tem Mo	odel and Verification	61
3	Sys t 3.1		odel and Verification nunication System: Interconnections Level	61
3	-			
3	-	Comn	nunication System: Interconnections Level	61
3	-	Comm	nunication System: Interconnections Level	61 62
3	-	Comm 3.1.1 3.1.2 3.1.3	Interconnect Model	61 62 64
3	3.1	3.1.1 3.1.2 3.1.3 Simul	Interconnect Model	61 62 64 66
4	3.1 3.2 3.3	3.1.1 3.1.2 3.1.3 Simul Sumn	Interconnect Model	61 62 64 66 69
	3.1 3.2 3.3	Comm 3.1.1 3.1.2 3.1.3 Simul Summ	Interconnect Model	61 62 64 66 69 77
	3.1 3.2 3.3 Con	Comm 3.1.1 3.1.2 3.1.3 Simul Summ	Interconnect Model	611 622 644 666 699 777

List of Figures

1.1	TSMC Technology growth (Adapted from: www.tsmc.com)	2
1.2	CMOS scaling for "More than Moore". (Adapted from: www.ie	ot.ieee.org)
		3
1.3	Clock frequencies increase over the years. (Adapted from:	
	[7])	4
1.4	Future computational power. (Adapted from: [8])	4
1.5	Measured response due to existence of through-hole via in	
	uniform 38-cm-long trace in a 10-1 ayers PCB. (Adapted from:	
	[11])	5
1.6	100 MHz clock signal exhibit ringing due to impedance mis-	
	match. (Adapted from: [11])	6
1.7	Signal integrity problems	7
1.8	Signal aberrations: ideal signal (blue), real world (red)	7
2.1	Ideal Clock Waveform	22
2.2	Ideal clock signal in the frequency domain: a) Magnitude	
	spectra, b) Phase spectra	24
2.3	Clock skew definition	25
2.4	Lead and lag skew definition	26

2.5	Clock signal and its skewed version for $A = 1.5$: a) Synthe-	
	sized signals from their Fourier series expansion, b) Magni-	
	tude spectra, c) Phase spectra	28
2.6	Phase spectra of two signals with different values of skew:	
	a) Wrapped phase, b) Unwrapped phase	30
2.7	Ringing in clock signal	33
2.8	Ideal and oscillating clock signals (ζ =0.2 and f_n =1.4 GHz):	
	a) synthesized signals from their Fourier series expansion,	
	b) Magnitude spectra, c) Phase spectra	36
2.9	Effect of changing the parameters on phase spectrum: a) Dif-	
	ferent values of f_n ($\zeta {=} 0.2$, $f_o {=} 200$ MHz), b) Different values	
	of f_o (ζ =0.3, f_n =1.8 GHz), c) Different values of ζ (f_n =1.400	
	GHz, f_o =200 MHz)	37
2.10	Same ratio of f_n/f_o produces the same phase shape	38
2.11	Relation between $ D_n $, ζ and the ratio between f_n and f_o	
	based on (2.23)	39
2.12	Trapizoidal approximation of the clock signal with unequal	
	rise time t_r and fall time t_f	42
2.13	response of first-order system to step input, illustrating the	
	delay time, fall time and rise time	43
2.14	Ideal and clock with rise and fall times signals ($A=1.5$): a)	
	Synthesized signals from their Fourier series expansion, b)	
	Magnitude spectra, c) Phase spectra	45

2.15	Actual and jittered clock Signals. J_{AC} is the time difference	
	between jittered clock transition and ideal transition	47
2.16	Jitter components	48
2.17	Evaluation of the dual-Dirac PDF by convolving of the sum	
	of two delta functions positioned at μ_L and μ_R and RJ rep-	
	resented by Gaussian distribution	51
2.18	For small angle θ , the value of $\sin(\theta)$ can be reduced to θ	
	while $\cos(\theta)$ reduced to 1	53
2.19	Real and jittered clock signals ($A=1.5$, $\sigma=80 \mathrm{pS}$): a) Syn-	
	thesized signals from their Fourier series expansion (up to	
	the 7^{th} harmonic), b) Power Spectral Density of the real clock,	
	c) Power Spectral Density of the jittered clock	58
2.20	Probability density function of the generated jitter	59
2.21	The value of random jitter used in the simulation	59
3.1	A general communications system model	61
3.2	Communication between two chips on the same PCB (adapted	
	from [19])	62
3.3	IBM Supercomputer hierarchy (Source: [69])	63
3.4	Evolution of interconnect from lumped capacitor to distributed	
	RC model, then, nowadays, distributed RCL model	64
3.5	IBIS buffer models. a) Input buffer, b) output buffer (Source:	
	[70])	65
3.6	System model and Simulation Setup	67

3.7	Adding series resistor halfway between the driver and re-	
	ceiver to compensate the drop of the driver's impedance	68
3.8	The effect of changing the series resistor in the overshoot	
	and rise time (Source: [76])	69
3.9	200 MHz skewed signal: a) Signal obtained from ADS time-	
	domain simulation, b) Magnitude spectrum, c) Phase spec-	
	trum	71
3.10	100 MHz Oscillating clock signal obtained from circuit sim-	
	ulation: a) Signal, b) Magnitude spectrum, c) Phase spectrum.	73
3.11	100 MHz clock signal obtained from circuit simulation: a)	
	Signal, b) Magnitude spectrum, c) Phase spectrum	74
3.12	100 MHz jittered clock signal obtained from circuit simula-	
	tion: time-domain signal	75
3.13	100 MHz jittered clock signal obtained from circuit simula-	
	tion: a) eye diagram, b) jitter histogram, c) Power Spectral	
	Density of the jittered clock	76

List of Abbreviations

ADS Advanced Design System

BUJ Bounded-Uncorrelated Jitter

CNT Carbon NanoTubes

DC Direct Current

DCD Duty-Cycle Distortion

DDJ Data Dependent Jitter

DDR Double Data Rate synchronous dynamic random-access memory

DJ Deterministic Jitter

EMI Electromagnetic Interference

FD Frequency Domain

FDTD Finite-Difference Time Domain

FPGA Field Programmable Gate Array

HHT Huang-Hibert Transform

HT Hibert Transform

IBIS Input Buffer Information Specification

ICs Integrated Circuits

IFFT Inverse Fast-Fourier Transform

IO Input Output

ISI Inter-Symbol Interference

ITRS International Technology Roadmap for Semiconductor

MIPS Mega Instruction Per Second

MtM More than Moore

NRZ Non Return to Zero

OCT On-**C**hip **T**ermination

ODT On**-D**ie Termination

PAM Pulse Amplitude Modulation

PCB Printed Circuit Board

PDF Probability Density Function

PEEC Partial Element Equivalent Circuit

PJ Periodic Jitter

PSD Power Spectral Density

RC Resistance-Capacitance

RCL Resistance- Capacitance- Inductance

RJ Random Jitter

SI Signal Integrity

SoC System on Chip

SPICE Simulation Program with Integrated Circuit Emphasis

STFT Short-Time Fourier Transform

TD Time Domain

TDFE Time Domain Finite Element

TDR Time-Domain Reflectometer

TSMC Taiwan Semiconductor Manufacturing Company

VHDL Very high-speed integrated circuit Hardware Description Languague

WT Wavelet Transform