

ANALYSIS OF SPRAYABLE POLYDIMETHYL SILOXANE THERMAL INSULATION FOR HIGH TEMPERATURE APPLICATIONS

By

Eng. / Tarek Mohamed Fouad Asawy Abd El-Ghafar

A Thesis Submitted to the
Chemical Engineering Department
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
DOCTOR OF PHILOSOPHY
In
CHEMICAL ENGINEERING

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2017

ANALYSIS OF SPRAYABLE POLYDIMETHYL SILOXANE THERMAL INSULATION FOR HIGH TEMPERATURE APPLICATIONS

By

Eng. / Tarek Mohamed Fouad Asawy Abd El-Ghafar

A Thesis Submitted to the
Chemical Engineering Department
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
DOCTOR OF PHILOSOPHY
In
CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. **Ehab Fouad Abadir**

Prof. Dr. **Sahar M. EL-Marsafy**

Chemical Engineering Department Faculty of Engineering Cairo University

Prof. Dr. **Khaled Shokry Ghith** Armed Forces- Military Technical College

> FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2017

ANALYSIS OF SPRAYABLE POLYDIMETHYL SILOXANE THERMAL INSULATION FOR HIGH TEMPERATURE APPLICATIONS

By

Eng. / Tarek Mohamed Fouad Asawy Abd El-Ghafar

A Thesis Submitted to the Chemical Engineering Department Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY

In

CHEMICAL ENGINEERING

Approved by the

Examining Committee:

Prof. Dr. Ehab Fouad Abadir

(Thesis Main Advisor)

Chemical Engineering Department Faculty of Engineering - Cairo University

Prof. Dr. Khaled Shokry Ghith

(External Examiner Advisor)

Armed Forces/Military Technical College

Prof. Dr. Shadia Shaffic Aggour

(Internal Examiner)

Chemical Engineering Department Faculty of Engineering - Cairo University

Prof. Dr. Ahmed Esmael Hussein

(External Examiner)

Prof. of Polymer Technology National Research Center- Cairo-Egypt

> FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer: Tarek Mohamed Fouad Asawy Abd El-Ghafar

Date of Birth: 31 / 1 / 1969 Nationality: Egyptian

E-mail: t_fou2002@yahoo.com

Phone: 01006559303

Address: Cairo, Nasr City, District 8, 24 Africa. St

Registration Date: 1/10/2012 Awarding Date: //2017

Degree: DOCTOR OF PHILOSOPHY

Department: Chemical Engineering

Supervisors: Prof. Dr. Ehab Fouad Abadir (Main Supervisor)

Prof. Dr. Sahar M. EL-Marsafy

Prof. Dr. Khaled Shokry Ghith (M.T.C / Armed Forces)

Examiners: Prof. Dr. **Ehab Fouad Abadir** (Main Supervisor)

Prof. Dr. Khaled Shokry Ghith (M.T.C / Armed Forces)

Prof. Dr. Shadia Shaffic Aggour

Prof. Dr. Ahmed Esmael Hussein (National Research Center)

Title of Thesis: (ANALYSIS OF SPRAYABLE POLYDIMETHYL SILOXANE THERMAL INSULATION FOR HIGH TEMPERATURE APPLICATIONS)

Key Words: (sprayable coating, Mechanical Fillers, thermal Fillers, Degradation Kinetics, Heat transfer)

Summary:

In recent years, there has been a large increase in employing polymers in engineering applications. Modified Polysiloxanes are generally recognized as the newest generic class of high performance protective sprayable coating. For this reason, understanding the mechanical, thermal and flammable properties of blended PDMS under high temperature and different loading rates has become important to study. In this thesis, storage modulus, loss modulus and stiffness, Tan Delta, thermal degradation at different heating rates (5, 10,15and 20°C/min) have been measured, kinetics of thermal degradation, thermal conductivity, heat capacity, thermal expansion ratio, flammable properties and mathematical heat transfer models programs for PDMS mixtures samples were thoroughly investigated by using several techniques (DMA, TGA, TMA, DSC, LOI%-UL94V, SEM, Pull-Off Test, MATLAB, FORTRAN).

Acknowledgments

In the name of **ALLAH**. All glory is to **ALLAH**, the only one who granted me health, patience, and willpower to accomplish this research.

I would like to sincerely thank my supervisor **Dr. Ehab Fouad Abadir - Professor of Chemical Engineering-Chemical Engineering Department -Faculty of Engineering - Cairo University** for helping and supporting me all along the experimental work of this study. **Dr. Abadir** devoted a great part of his time to the supervision of this thesis and without his valuable guidance and assistance; this work would have never been completed.

Deepest gratitude and thanks to **Dr. Sahar M. EL-Marsafy Professor of Chemical Engineering - Chemical Engineering Department - Faculty of Engineering. Cairo University** for her keen support during the course of work. **Dr. EL-Marsafy** has suggested the scheme of the work and has continually offered support and encouragement.

As well express my sincere gratitude to my Examining Committee Dr. Shadia Aggour Professor of Chemical Engineering Department and Dr. Ahmed Esmael Hussein Professor of Polymer Technology-National Research Center – Cairo.

In addition, I would like to express my sincere gratitude to **Dr. Zakaria El. Beheery Dr. Khaled Shokry Ghith** for supervision and guidance during the course work.

I definitely wish to thank **Dr. Abd El-Fattah Mahmoud Eissa, Dr. Mohamed EL**Samanody and **Dr. Mohamed EL Montaser for** their continuous support and encouragement.

Appreciation is also due to all staff of the Chemical Eng. Dept.- Faculty of Eng. - Cairo University, for their unfailing encouragement and tolerance. Many thanks to Science and Technology center of Excellence, for helping me to finish my experimental work.

I am indebted to my **father**, **mother** and **wife** for supporting and encouraging me during my thesis work.

Table of Contents

ACKNOWLEDGEMENT	V
TABLE OF CONTENTS.	vi
LIST OF TABLES.	X
LIST OF FIGURES.	xii
NOMENCLATURE	xvii
ABSTRACT	XX
CHAPTER 1: LITERATURE REVIEW	
1.1. Introduction.	1
1.1.1. Brief History of Silicones	2
1.1.2. Brief History of Polysiloxanes	3
1.2. Brief History of Polysiloxanes Additives	5
1.2.1. Mica	5
1.2.2. Kaolin	7
1.2.3. Calcium carbonate	7
1.2.4. Polyamide (Torlon66).	7
1.3. Formulation of RTV Silicon Elastomers	8
1.4. Classifications of Thermal Insulation According to Application	9
1.5. Oxidation degradation of PDMS	10
1.6. Productions of PDMS	12
1.7. Flame retardance for silicones	14
1.7.1. Flame Retardants Mechanism	14
1.7.2. Theory of Flame Retardance	16
1.7.2.1. Physical Action	17
1.7.2.2. Chemical Action	18
1.7.3. Important Flame Retardants types 1.7.3.1. Halogen Containing Flame Retardants	18 19
1.7.3.2 . Phosphorous Containing Flame Retardants	20
1.7.3.3. Inorganic Flame Retardant Compounds	21

1.8. Thermal Spraying Coating Technique.	23
1.8.1. History	23
1.8.2 Spray coating applications	24
CHAPTER 2: AIM OF WORK	
2.1 . Plan of the present work	26
CHAPTER 3: MATERIALS AND METHODS	
3.1. Materials	28
3.1.1. PDMS (SILIKPHEN P/80/X)	28
3.1.2. Mica (Muscovite)	28
3.1.3. Polyamide (Torlon) 66	28
3.1.4. Kaolinite (Kaolin)	29
3.1.5. Zinc Borate (ZB)	29
3.1.6. Calcium carbonate	29
3.1.7. Antimony trioxide	30
3.1.8. Alumina trihydrate	30
3.2. Sample preparation	31
3.3. Spray coating equipment	35
3.4. Testing techniques	36
3.4.1. Measurement of specific gravity	36
3.4.2. Measurement of mechanical properties (DMA)	36
3.4.3. Measurement of the hardness- shore (A)	38
3.4.4. Measurement of thermal analysis	40
3.4.4.1. Comparative thermal conductivity measurement	40
3.4.4.2. Differential scanning calorimetry (DSC)	43
3.4.4.3. Thermal gravimetric analysis (TGA)	46
3.4.4.3.1. Kinetic approach	46
3.4.4.3.2. Introduction to the kinetic methods	47
3.3.4.3.3. Kissinger-AKahira-Sunose method equations	48
3.4.4.3.4. Flynn-Wall-Ozawa method equations	49

3.4.4.3.5. Pre-Exponential Factor for different PDMS fillers	s
3.4.4.4. Thermomechanical analysis (TMA)	
3.4.5. Flammability analysis	
3.4.5.1. Limiting oxygen index measurements (LOI%)	
3.4.5.2. Vertical flame test (UL94V)	
3.4.6. Micro structure measurement using (SEM)	
3.4.7. Pull-off adhesion testing for thermal protection coating	
CHAPTER 4: RESULTS AND DISCUSSIONS	
4.1. Specific gravity of PDMS	
4.2. Mechanical properties.	
4.2.1. Shore (D) hardness	
4.2.2. Dynamic mechanical analysis (DMA)	••••
4.2.3. Effect of mechanical mixture fillers on PDMS samples	••••
4.2.3.1. Storage modulus	
4.2.3.2. Loss modulus	• • • •
4.2.3.3. Stiffness	
4.2.3.4. Tan delta (δ)	
4.2.4. Pull-off adhesion testing for thermal protection coating	
4.3. Thermal properties	••••
4.3.1. Thermal conductivity (TC)	
4.3.2. Differential scanning calorimetry (DSC)	
4.3.3. Thermal mechanical analysis (TMA)	••••
4.3.4 Thermogravimetric analysis (TGA)	
1.4. Kinetics of Thermal Degradation of PDMS loaded with mixture fillers	
4.4.1. Kissinger-AKahira-Sunose method	
4.4.2. Flynn-Wall-Ozawa method	
4.4.3. Pre-Exponential factor calculation for different mixture fillers	
4.5. Flammability properties of PDMS samples	
4.5.1. Limiting oxygen index (LOI %)	
4.5.2. UL94V test of PDMS	
4.6. Mathematical models	

4.6.1. Steady State heat transfer
4.6.1.1. Heat Transfer Equation by Conduction through PDMS coating
4.6.1.2. Solution of the first Case Study (Steady State)
4.6.2. Unsteady state heat transfer
4.6.2.1. The assumptions for the second model
4.6.2.2. Model description
4.6.2.3. Input data for the second unsteady state heat transfer model
4.7. Heat transfer equation by conduction and convection through sprayable
PDMS thermal insulation coating
4.7.1. Solution of the unsteady state model
4.7.1.1. Heat transfer energy equation of hot gases interface with
sprayable thermal coating insulation material
4.7.1.2. Heat transfer energy equation of inside the thermal
insulation coating
4.7.1.3. Heat transfer energy equation of interface between the
thermal coating insulation and metallic surface
4.8. Comparison between PDMS and asbestos samples using direct flame
4.9. Comparison between PDMS and asbestos samples using SEM
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS
5.1 . Conclusions
5.2. Recommendations
5.3. Future Work
REFERENCES
REFERENCES
APPENDIXES OF EXPERIMENTAL RESULTS
Appendix A:Fortran program solving heat transfer equations (unsteady state)
Appendix B:Temperature distribution for different PDMS coating layers
at different iterations using Fortran results (unsteady state)
Appendix C: Fortran flowcharts
ARARIC ARSTRACT

List of Tables

Table 1.1: Comparison of automatic spraying and manual spraying	
Table 3.1: PDMS samples tested for (LOI% - UL94 V)	
Table 3.2: PDMS mixtures tested for thermal and flammability	
Table 3.3: PDMS Samples Tested for Mechanical Properties (DMA)	
Table 3.4: PDMS Mixture Tested for Mechanical Properties	
Table 3.5: Sprayable thermal cycle program for PDMS coating	
Table 3.6: Vertical ratings requirements	
Table 4.1: Specific gravity of PDMS loaded with thermal mixture fillers	
Table 4.2: Shore D for PDMS loaded with mechanical mixture fillers Table 4.3: Effect of mechanical fillers on PDMS samples by DMA at 100°C	,
Table 4.4: Effect of mechanical mixture fillers on PDMS samples by DMA at (100-200) °C	
Table 4.5: Test result of tensile pull-off adhesion for different loading mechanical mixture fillers.	
Table 4.6: Thermal Conductivity of PDMS loaded with	
thermal mixture fillers	
Table 4.7: (Cp -T _D - T _{melt}) of PDMS samples loaded with thermal mixture fillers	
Table 4.8: Thermal expansion coefficient ratio for PDMS thermal mixture fillers.	1
Table 4.9: Peak temperature for thermogravimetric analysis by Kissinger-	
AKahira-Sunose method	
Table 4.10: Effect of thermal mixture fillers on activation energy calculated	
from Kissinger- AKahira-Sunose method	

Table 4.11: Activation energy for thermal degradation of different PDMS	
thermal mixture fillers as calculated by Flynn-Wall-Ozawa	129
Table 4.12: Values of Pre-exponential factor for different PDMS thermal mixture fillers	156
Table 4.13: Limiting Oxygen Index of PDMS samples loaded with thermal fillers	159
Table 4.14: Limiting oxygen index of PDMS samples loaded with	
thermal mixture fillers	159
Table 4.15: UL94V of PDMS Samples loaded with (Mica, ATO, ATH) %	161
Table 4.16: UL94V of PDMS mixtures loaded with thermal. mixture fillers	161

List of Figures

Fig. 1.1: Polysiloxanes structure	
Fig. 1.2: RTV silicon elastomers formulation	
Fig. 1.3: Polydialkylsiloxanes structure	
Fig. 1.4: Mechanism OF oxidation degradation for PDMS	
Fig. 1.5: Productions of PDMS	
Fig. 1.6: Ring-opening polymerization	
Fig. 1.7: pyrolysis process schematic Diagram	
Fig. 3.1: DMA Q800 V20.24 build 43	
Fig. 3.2: Zwick hardness tester type 3116	
Fig. 3.3: A Schematic Comparative Thermal Conductivity Apparatus	
Fig. 3.4: A schematic differential scanning calorimetry	
Fig. 3.5: Schematic diagrams of TMA instrument	
Fig. 3.6: Oxygen index instrument.	
Fig. 3.7: Oxygen index instrument details	
Fig. 3.8: UL94V Vertical Flame Test	
Fig. 3.9: UL94V Test Specimen Bar	
Fig. 3.10: Schematic scanning electron microscope.	
Fig. 3.11: Pull-Off adhesion tester (Electrometer 106)	
Fig. 4.1: Variation of hardness with mechanical fillers added	
Fig. 4.2: Storage modulus of PDMS samples loaded with mechanical	
fillers at different temperatures	
Fig. 4.3: Loss modulus of PDMS samples loaded with mechanical	
fillers at different temperatures	
•	
Fig. 4.4: Stiffness of PDMS samples loaded with mechanical	
fillers at different	
Fig. 4.5: Relaxation strength of PDMS samples loaded with	
mechanical fillers at different temperatures	
Ein A.C. Stores a modules of DDMS complex leaded with mochanical	
Fig. 4.6: Storage modules of PDMS samples loaded with mechanical	
mixture fillers at different temperatures	
Fig. 4.7: Effect of mechanical mixture fillers on storage modulus	
-	
at different temperatures (100-200) °c	
Fig. 4.8: loss modules of PDMS samples loaded with mechanical	
mixture fillers at different temperatures	

Fig. 4.9: Effect of mechanical mixture fillers addition on loss modulus at different Temperatures (100-200) °c	
Fig. 4.10: Stiffness of PDMS samples loaded with mechanical mixture	
fillers at different temperatures	
Fig. 4.11: Effect of mechanical mixture fillers addition on stiffness	
at different Temperatures (100-200) °c	
Fig. 4.12: Relaxation strength of PDMS samples loaded with mechanical	
mixture fillers at different temperatures	
Fig. 4.13: Effect of mechanical mixture fillers addition on relaxation strength (Tanδ peak)	
Fig. 4.14: Tensile adhesion force for PDMS samples loaded	
with different mechanical mixture fillers	
Fig. 4.15: PDMS samples tested by Pull Off test	
Fig. 4.16: Effect of thermal mixture fillers addition on Thermal	
conductivity of PDMS samples	
Fig. 4.17: Differential scanning calorimetry of PDMS M1	
Fig. 4.18: Differential scanning calorimetry of PDMS M2	
Fig. 4 .19: Differential scanning calorimetry of PDMS M3	
Fig. 4 .20: Differential scanning calorimetry of PDMS M4	
Fig. 4 .21: Differential scanning calorimetry of PDMS M5	
Fig. 4 .22: Differential scanning calorimetry of PDMS M6	
Fig. 4.23: Differential scanning calorimetry of PDMS M7	
Fig. 4.25: Differential scanning calorimetry of PDMS M9	
Fig. 4.26: Differential scanning calorimetry of PDMS M10	
Fig. 4.27: Differential scanning calorimetry of PDMS M11	
Fig. 4.28: Differential scanning calorimetry of PDMS M12	
Fig. 4.29: Differential scanning calorimetry of PDMS M13	
Fig. 4.30: Effect of thermal mixture fillers addition on melting	
temperatures of PDMS samples	
composition of 1 21/15 sumptos	

Fig. 4.31: Effect of thermal mixture fillers addition on decomposition
temperatures of PDMS samples
Fig.4 .32: Effect of thermal mixture fillers addition on heat capacity temperatures of PDMS samples
Fig.4.33: Thermal mechanical analysis curve of PDMS M1
Fig.4.34: Thermal mechanical analysis curve of PDMS M2
Fig.4.35:Thermal mechanical analysis curve of PDMS M3
Fig.4.36: Thermal mechanical analysis curve of PDMS M4
Fig.4.37: Thermal mechanical analysis curve of PDMS M5
Fig.4.38: Thermal mechanical analysis curve of PDMS M6
Fig.4.39: Thermal mechanical analysis curve of PDMS M7
Fig.4.40: Thermal mechanical analysis curve of PDMS M8
Fig.4.41: Thermal mechanical analysis curve of PDMS M9
Fig.4.42: Thermal mechanical analysis curve of PDMS M10
Fig.4.43: Thermal mechanical analysis curve of PDMS M12
Fig.4.44: Thermal mechanical analysis curve of PDMS M13
Fig.4 .45: Expansion coefficient of PDMS samples loaded with
thermal mixture fillers
Fig.4.46: TG curves of PDMS at different heating rates M1
Fig.4.47: TG curves of PDMS at different heating rates M2
Fig.4.48: TG curves of PDMS at different heating rates M3
Fig.4.49: TG curves of PDMS at different heating rates M4
Fig.4.50: TG curves of PDMS at different heating rates M5
Fig.4.51: TG curves of PDMS at different heating rates M6
Fig.4.52: TG curves of PDMS at different heating rates M7
Fig.4.53: TG curves of PDMS at different heating rates M8
Fig.4 .54: TG curves of PDMS at different heating rates M9
Fig.4.55:TG curves of PDMS at different heating rates M10
Fig. 4.56: TG curves of PDMS at different heating rates M11
Fig.4.57: TG curves of PDMS at different heating rates M12
Fig.4.58: TG curves of PDMS at different heating rates M13

Fig.4.59: Effect of on activation energy of PDMS Samples loaded	
with thermal mixture fillers	
Fig.4.60: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M1 (KSG)	
Fig.4.61: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M2 (KSG)	
Fig.4.62: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M3 (KSG)	
Fig.4.63: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M4 (KSG)	
Fig.4.64: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M5 (KSG)	
Fig.4.65: Plot of $\ln \beta/T^2$ vs. $1/T$ for PDMS – M6 (KSG)	
Fig.4.66: Plot of $\ln \beta/T^2$ vs. $1/T$ for PDMS – M7 (KSG)	
Fig.4 .67: Plot of $\ln \beta/T^2$ vs. $1/T$ for PDMS – M8 (KSG)	
Fig.4.68: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M9 (KSG)	
Fig.4.69: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M10 (KSG)	
Fig.4.70: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M11 (KSG)	
Fig.4.71: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M12 (KSG)	
Fig.4.72: Plot of $\ln \beta/T^2$ vs. 1/T for PDMS – M13 (KSG)	
Fig.4.73: Plot of ln β vs. 1/T for PDMS – M1 (FWO)	
Fig.4.74: Plot of ln β vs. 1/T for PDMS – M2 (FWO)	
Fig.4.75: Plot of ln β vs. 1/T for PDMS – M3 (FWO)	
Fig.4.76: Plot of ln β vs. 1/T for PDMS – M4 (FWO)	
Fig.4.77: Plot of ln β vs. 1/T for PDMS – M5 (FWO)	
Fig.4.78: Plot of ln β vs. 1/T for PDMS – M6 (FWO)	
Fig.4.79: Plot of ln β vs. 1/T for PDMS – M7 (FWO)	
Fig.4.80: Plot of ln β vs. 1/T for PDMS – M8 (FWO)	
Fig.4.81: Plot of ln β vs. 1/T for PDMS – M9 (FWO)	
Fig.4 .82: Plot of ln β vs. 1/T for PDMS – M10 (FWO)	
Fig.4.83: Plot of ln β vs. 1/T for PDMS – M11 (FWO)	
Fig.4 .84: Plot of ln β vs. 1/T for PDMS – M12 (FWO)	
Fig.4.85: Plot of ln β vs. 1/T for PDMS – M13 (FWO)	
Fig.4.86: Limiting Oxygen Index of PDMS samples loaded	
with thermal fillers	