

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Zagazig University – Banha Branch **Shoubra Faculty of Engineering Surveying Department**

REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEM IN SUDAN

A Thesis Submitted to Shoubra Faculty of Engineering, Zagazig University - Banha Branch, Surveying Department, for the Fulfillment of the Requirements for the Degree of Doctorate of Philosophy in Survey Engineering

$\mathbf{B}\mathbf{y}$ Brig. Eng. (Rt.) Fathi Mohamed Mohamed Saied

M. Sc. in Survey Engineering Shoubra Faculty of Engineering Zagazig University - Banha Branch Asst. Prof. Faculty of Engineering Sciences, Omdurman Islamic University- Sudan

Supervised By

Prof. Dr. Ahmed Fouad El – Sheikh

Prof. of Surveying and Photogrammetry Shoubra Faculty of Engineering Zagazig University- Banha Branch

Prof. Dr. Rifat Ahmed Ismail

Prof. of Surveying and Photogrammetry Shoubra Faculty of Engineering Zagazig University- Banha Branch

Prof. Dr. Mahmoud Mohamed Hamed

Prof. of Surveying and Photogrammetry Head of Surveying Department Shoubra Faculty of Engineering

Zagazig University- Banha Branch

2005

Zagazig University - Banha Branch Shoubra Faculty of Engineering Surveying Department

APPROVAL SHEET

The undersigned certify that they have read the research work under the topic Remote Sensing and Geographical Information System in Sudan, Submitted by M.Sc. Engineer Fathi Mohamed Mohamed Saied to Surveying Department at Shoubra Faculty of Engineering, Zagazig University - Banha Branch, and they recommend to accept it for the fulfillment of the requirements for the degree of Doctorate of Philosophy in surveying and photogrammetry.

Examination Committee

Prof. Dr. Ali Abd Alrazig Al Sharkawi (External Examiner)

Prof. of Surveying and Photogrammetry AL-Mataria Faculty of Engineering Hulwan University

Prof. Dr. Saad Zaki Bolbol (Internal Examiner)

Prof. of Surveying and Geodesy Vice Dean for Student Affairs Shoubra Faculty of Engineering Zagazig University - Banha Branch

Prof. Dr. Ahmed Fouad El - Sheikh (Supervisor and Moderator)

Prof. of Surveying and Photogrammetry
Shoubra Faculty of Engineering, Banha Branch
Zagazig University (Ex-President)

Prof. Dr. Rifat Ahmed Ismail (Supervisor)
Prof. of Surveying and Photogrammetry
Shoubra Faculty of Engineering
Zagazig University- Banha Branch

Prof. Dr. Mahmoud Mohamed Hamed (Supervisor)
Prof. of Surveying and Photogrammetry Prof. of Surveying and Photogrammetry

Prof. of Surveying and Photogrammetry Head of Surveying Department Shoubra Faculty of Engineering Zagazig University- Banha Branch

Dedication

First Dedication

To those who taught me how to live with

Others in love, to my parents, my family,

With great love and thanks

Second Dedication

To the great figures whose help, I hope can assist me in gaining this degree of education, my teachers, my professors and to all those who supported me and stood by my side to help pave my way and point me in the direction of success throughout my educational life.

ACKNOWLEDGMENT

In the name of Allah the most gracious, most merciful, and prayers and peace be upon Prophet Mohammed.

These studies were carried out under the supervision, guidance and help of Prof. Dr. Ahmed Fouad El-Sheikh, Prof. Of surveying and photogrammetry at the surveying department of Shoubra Faculty of Engineering, Prof. Dr. Rifat Ahmed Ismail Prof. Of Surveying and Photogrammetry at the same Faculty, and Prof. Dr. Mahmoud Mohammed Hamed Prof. of Surveying and Photogrammetry, the Head of the surveying department of the same faculty.

I wish to express my deepest gratitude and appreciation to them for their constant supervision, continuous encouragement, they always tried to help me by giving me useful hints and valuable advises during the accomplishment of this thesis.

I would like to express my appreciation to the staff, colleagues and workers at the surveying dept. at Shoubra Faculty of Engineering for their help and support.

A note of thanks to the staff of Omdurman Islamic University at the Republic of Sudan and special word of appreciation is conveyed to the Faculty of Engineering Sciences whose support in one way or another made the thesis a reality.

I would also like to extend my dearest appreciation to my previous military unit, the Military Survey Administration of the Sudanese People Armed Forces headed by General Eng. Osman Abdel-Jalil Abu Zaid, for their

generous provisioning of the data and information required to complete this research study.

Finally I would like to express my sincerest appreciation, everlasting gratitude to my friends in Sudan Prof. Dr. Abdullah ElSadig Ali and Dr. Adel Mohammed Ahmed El-Sinnari for their endless and invaluable help and support through out all the phases of this research studies.

ABSTRACT

This research presents the results obtained from an experimental test concerned with a modern, broad, and dynamic field of remote sensing (RS) and Geographical Information System (GIS) integration. It contains detailed studies for different techniques of (RS) and GIS and their applications especially for engineering purposes at Khartoum state in Sudan.

Through out the present research wide range of procedures and a new methodology were developed and applied. It can be concluded that:

- 1. Remote sensing and GIS integration was very useful issue in developing the GIS model of any study area required.
- 2. Different types of maps, including, base and thematic maps could be produced based on remotely sensed data as well as existing documents.
- 3. The findings showed acceptable results and some of the high-resolution remote sensing systems like IKONOS of the USA (one meter resolution) present the great importance of using them in many engineering, environmental, and military purposes.
- 4. Some important conclusion and recommendations are given at the end of the thesis to realize the practical applications in Sudan whenever it is possible, because of the very wide areas of the country and the main fruitful of this research, that, we found a solution for the sever problems arising from the lack of basic quantitative and qualitative statistical information, one of the main reasons of that lack is the scarce of topographic maps in Sudan. This solution opens a wide gate for space mapping and updating the old maps in my country. Therefore, because of its ability to allow the fast and cheap production and updating of maps covering large areas remote sensing (RS) and Geographical Information System (GIS) techniques are being the most suitable for establishing perfect system for basic quantitative and qualitative statistical information, mapping and updating maps in Sudan.

ABBREVIATIONS

AVNIR Advanced Visible and Near Infrared Radiometer

CCD Change Coupled Device Detectors

CSA Canadian Space Agency
DEM Digital Elevation Model
DTM Digital Terrain Model

ERTS Earth Resources Technology Satellites

ETM+ Enhanced Thematic Mapper Plus

FOV Field of View

GCP Ground Control Point

GIS Geographic Information Systems

GPS Global Positioning System
HRG High Resolution Geometric
HRS High resolution Stereoscopic
HRV High Resolution Visible

HRVIR High Resolution Visible Infrared IFOV Image Selection Guide Software

IKONOS Derived from the Greek word for image

LISS Linear Imaging Self-Scanner
LWIR Long Wavelength Infrared
MDA MacDonald Dettwiler

MDA MacDonald Dettwiler

MS Multispectral Imagery

NASA National Aeronautics and Space Administration

NMAS National Map Accuracy Standards

PAN Panchromatic Imagery

PF Priority Filter

RBV Return Beam Vidicon

RGB Red Green Blue

RMSE Root Mean Square Error
SAR Synthetic Aperture Radar
SIR Synthetic Image Radar

SLAR Side Looking Airborne Radar SMC Surface Material Composition SWIR Short Wavelength Infrared

TM Thematic Capper

UTM Universal Transverse Mercator
VMI Vegetation Monitoring Instrument

VNIR Visible and Near Infrared

WIFS Wide Field Sensor.

TABLE OF CONTENT

ACKNOWLEDGMENT	1
ABSTRACT	111
ABBREVIATIONS	IV
TABLE OF CONTENT	V
LIST OF TABLES	VШ
LIST OF FIGURES	IX
INTRODUCTION	XI
CHAPTER ONE	2
REMOTE SENSING PRINCIPLES AND APPLICATIONS	2
1.1. HISTORICAL REVEW	2
1 1 1 Phase (1)	2
1 1 2 Phase (2)	5
1 1 3 Phase (3)	
1 1 4 Phase (4)	5
1 1 5 Phase (5)	
1.2 FUNDAMENTALS OF REMOTE SENSING	4
1.2.1 Definition	4
1.2.2. Physics of Remote Sensing	ک
1.2.2.1 The Electromagnetic Spectrum	د
1.2.2.2. Generalized Processes In Remote Sensing	ه و
1.2.2.3. Atmospheric Effects	11
1.2.2.4. Resolution Of Remotely Sensed Data	12
1.2.3. Satellite Sensing Systems	14
	14
	14
	16
1.2.4.3. LANDSAT	18
1.2.4.5. Russian Remote Sensing System "RESURS – DK"	21
1 2 4 6 Indian Remote Sensing System (IRS - ID)	24
1 2 4 7 IKONOS Satellite System	20
1 2 4 8 Radar Satellite System	.,,,∠8
CHAPTER TWO	3 /
DIGITAL IMAGE PROCESSING	3 /
2.1 INTRODUCTION	37
2.2 DIGITAL IMAGE CHARACTERISTICS	38
2.3 DIGITAL NUMBERS	39
2.4 RIT SCALES	40
2.5 IMAGE RESTORATION	40
2.6. GEOMETRIC CORRECTION	40
2.6.1. SKEW	41 11
2.6.2. NONSYSTEMATIC DISTORTIONS	
2.6.3. RESAMPLING	

3.5.2.3. Real world Representation	73
3.5.3. Overlay and Analysis	74
3.5.4. Digital GIS Models.	74
3.6. GIS ANALYTICAL FUNCTIONS	75
3.6.1. Buffering	75
3.6.2. Adjacency and Connectivity	
3.6.3. Other GIS Functions	77
CHAPTER FOUR	
METHODOLOGY	
4.1. STUDY AREA	
4.2. MATERIALS	
4.2.1. Data	
4.2.2. Hardware And Software	
4.2.3. Procedures	
4.2.3.1. Data Management	86
4.2.3.2. Digital Image Processing	86
4.2.3.3. Preprocessing Phase	
4.2.3.4. Assessment of the Land Cover Classification Pr	
4.2.3.5. Creation of the GIS Model of The Study Area	
CHAPTER FIVE	99
RESULTS AND DISCUSSIONS	99
5.1. INTRODUCTION	
5.2. Land Use	
5.3. Land Cover	
5.4. Results and Analysis	101
5.4.1. The Urban Growth Analysis	101
5.4.2. The Vegetation Growth Analysis	102
5.4.3. A New Bridge Site Selection Analysis	102
5.4.4. A New Water Pump - station Selection Analysis	
5.4.5. Population Estimation from GIS Model of Study Are	
Halfaya Town)	104
5.5. COMPARISON BETWEEN IMAGING SYSTEMS' DA	
PRESENT STUDY	
5.5.1. Comparison between IKONOS & Aerial Photo	
5.5.2. Comparison between visual interpretations	
5.5.3. Geometric Accuracy Comparison (IKONOS – Map)	
5.5.4. Comparison between Analog and the Produced Digi	tal Map of the Study
Area 110	
CHAPTER SIX	112
CONCLUSIONS AND RECOMMENDATIONS	
6.1. CONCLUSIONS	112
6.2. RECOMMENDATIONS	
REFERENCES	
INTERNET WEBSITES	122
APPENDIX (A)	
THEMATIC MAPS OF THE STUDY AREA	124

3,5,2,3		73
3,5.3.	Overlay and Analysis	74
3.5.4.	Digital GIS Models	74
3.6. GIS	ANALYTICAL FUNCTIONS	
3.6.1.	Buffering	75
3.6.2.	Adjacency and Connectivity	
3.6.3.	Other GIS Functions	
CHAPTER :	FOUR	81
	LOGY	
	DY AREA	
4.2. MA	TERIALS	81
4.2.1.	Data	81
4.2.2	Hardware And Software	84
4.2.3.	Procedures	85
4.2.3.1		86
4.2.3.2		86
4.2.3.3		89
4.2.3.4		94
4.2.3.5		96
	FIVE	99
DECIMAC.	AND DISCUSSIONS	99
KESULIS A	RODUCTION	99
5.1. INT	d Use	99
5.2. Lan	d Cover	100
5.3. Land	ılts and Analysis	101
	The Urban Growth Analysis	101
5.4.1.	The Vegetation Growth Analysis	102
5.4.2.	A New Bridge Site Selection Analysis	102
5.4.3.	A New Water Pump – station Selection Analysis	103
5.4.4.	Population Estimation from GIS Model of Study Area (Case str	udy from
5.4.5.	Fown)	104
панауа	MPARISON BETWEEN IMAGING SYSTEMS' DATA, USEC	INTHE
PRESENT	STUDY	106
5.5.1.	Comparison between IKONOS & Aerial Photo	106
5.5.1. 5.5.2.	Comparison between visual interpretations	106
5,5,2. 5,5,3,	Comparison between visual interpretations	108
5.5.4.	Comparison between Analog and the Produced Digital Map of	the Study
Area	110	
CHAPTER		112
	ONS AND RECOMMENDATIONS	112
6.1. CO	NCLUSIONSCOMMENDATIONS	11
	ES	
	WEBSITES	
APPENDIX	(A)	124
THEMATION	MAPS OF THE STUDY AREA	124