EFFECT OF DIFFERENT LEVELS OF ZINC AND PROTEIN ON THE PERFORMANCE OF GROWING LAMBS

By

SHAIMAA RAMADAN ABD EL-GABER

B.Sc. (Animal Production), Fac. Agric., Cairo Univ., Egypt, (2001).

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Animal Production)

Department of Animal Production Faculty of Agriculture Cairo University EGYPT

2007

SUPERVISION SHEET

EFFECT OF DIFFERENT LEVELS OF ZINC AND PROTEIN ON THE PERFORMANCE OF GROWING LAMBS

M.Sc. Thesis BY

SHAIMAA RAMADAN ABD EL-GABER

B.Sc. (Animal Production), Fac. Agric., Cairo Univ., Egypt, (2001).

SUPERVISION COMMITTEE

Dr. SABBAH MAHMOUD ALLAM

Professor of Animal Nutrition, Fac. Agric., Cairo University.

Dr. FATEN FAHMY ABOU- AMMOU

Professor of Animal Husbandry, APRI, Ministry of Agriculture.

Dr. ALI MOHAMMED ALI

Associate Professor of Animal Nutrition, Fac. Agric., Cairo University. Name of candidate: Shaimaa Ramadan Abd El-Gaber Degree: M.Sc. Title of Thesis: Effect of different levels of zinc and protein on the performance of growing lambs.

Supervisors: Dr. S.M. Allam - Dr. Faten F. Abou Amou - Dr. A. M. Ali

Department: Animal production

Branch: Animal Nutrition Approval: 22 /10 /2007

ABSTRACT

The effect of different levels of dietary crude protein and zinc on growth performance, digestion coefficients, carcass characteristics, blood components and economical efficiency were evaluated. Thirty growing male Farafra lambs (four months of age and 22.19 kg weight) were used in growth trial for 6 months and distributed randomly into six feeding groups. The first three feeding groups were fed on rations containing 14 % CP without Zn supplementation, 20 mg Zn or 30 mg Zn, while the other groups were fed on rations contained 10 % CP without Zn supplementation, 20 mg Zn or 30 mg Zn (as ZnSO₄). Reduction of dietary crude protein level (from 14 to 10% CP) significantly (P<0.05) reduced digestion coefficients of DM, CP, CF, and DCP, NB, total protein and its fractions (albumin and globulin), urea, and ALT activity. However, the reduction of dietary crude protein did not significantly affect digestion coefficients of OM, EE, NFE, and TDN, final body weight, total body weight gain, ADG, DMI, feed conversion, slaughter weight, empty body weight, hot carcass weight, dressing percentage, serum Zn concentration, AST and alkaline phosphatase activity. While, it increased, significantly (P<0.05), serum creatinine concentration and economic efficiency. Zinc supplementation by 20 or 30 mg/d increased digestibility of DM, OM, CF, CP, EE, NFE TDN, DCP and N balance, final live body weight, total gain and average daily gain, feed conversion, slaughter weight, empty body weight, hot carcass weight, dressing percentage, serum zinc concentration, total protein, albumin and globulin, AST and ALT, but did not significantly affect DMI, TDN intake, creatinine concentration and alkaline phosphatase. significantly (p<0.05) decreased serum urea concentration.

Generally, supplementation of Zn to ration containing 10%CP reduced significantly the negative effects resulted from reducing protein content in lambs' rations. Lambs fed ration containing 10 % CP supplemented with either 20 or 30 mg Zn/h/d resumed good growth performance, improved nutrient digestion coefficients and nutritive values, carcass traits and economical efficiency nearly or slightly more than those fed ration containing 14% CP without Zn supplementation.

CONTENTS

Pa	age
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Zinc Supplementation	
a. Function of zinc	
b. Sources of zinc	
c. Zinc deficiency	
d. Zinc toxicity	
e. Zinc metabolism	
f. Zinc bioavailability	7
g. Effect of zinc level on nutrient digestibility	8
h. Effect of zinc level on growth performance	9
i. Effect of zinc level on carcass characteristics	13
j. Effect of zinc level on some blood components	
1. Blood zinc concentration	14
2. Alkaline phosphatase concentration	
3. Urea Nitrogen concentration	17
4. Total protein concentration	
5. Albumin concentration	
6. Globulin concentration	
7. Aspartic aminotransferase concentration	
8. Alanine aminotransferase concentration	
2. Dietary crude Protein level	
a. Effect of different crude protein levels on nutries	
digestibility	
b. Effect of different crude protein level on grov	
performance	
c. Effect of different crude protein level on carca	
characteristics	25
d. Effect of different crude protein on some blood	
components	26
MATERIALS AND METHODS	
1. Animals and experimental design	
2. Experimental rations	
3. Growth performance	
a. Live body weight	29

	Page
b. Body weight gain	29
c. Feed intake	
d. Feed conversion ratio	30
4. Carcass characteristics	30
5. Metabolism trials	30
6. Laboratory analysis	31
7. Blood traits	32
a. Zinc concentration	32
b. Total protein and its fraction	32
c. Kidney function	33
d. Liver function	33
e. Zinc analysis in diets	33
8. Economical Efficiency	
9. Statistical analysis	
RESULTS AND DISCUSSION	
1. Digestion coefficients, nutritive values an	
balance	-
a. Digestibility coefficients	35
b. Nutritive values	41
c. Nitrogen balance	43
2. Growth performance	
a. Live body weight	
b. Feed intake	
c. Feed conversion ratio	53
3. Carcass traits	54
a. Dressing percentage	
b. Carcass cuts	
c. Edible offals	62
d. Fat distribution	64
e. Non-edible parts	
f. Physical composition of ribs (9, 10 a	
4. Blood components	
a. Zinc concentration	72
b. Total protein and its fractions	
c. Kidney functions	
d. Liver functions	
5. Economical efficiency	
•	

	Page
SUMMARY	87
REFERENCES	94
ABBREVIATIONS, EXPRESSIONS AND SYMBOLS	106
ARABIC SUMMARY	

LIST OF TABLES

No	Title	Page
1.	Ingredients and proximate analysis (on DM basis) of the experimented rations fed to growing lambs	29
2.	Effect of dietary crude protein and zinc levels on Digestion coefficients, nutritive value and nitrogen balance	36
3.	Effect of dietary crude protein and zinc levels on nutrient intake, live body weight gain and feed conversion of	
4.	lambs Effect of dietary crude protein and zinc levels on fasting weight, empty body weight	47
_	(EBW), dressing percentages (DP)	56
5.	Effect of dietary crude protein and zinc levels on carcass cuts	61
6.	Effect of dietary crude protein and zinc levels on the edible offal weights and	
7.	percentages of hot carcass weight Effect of dietary crude protein and zinc levels fat weights and percentages	63
8.	Effect of dietary crude protein and zinc levels on non-edible parts weights and	03
9.	Effect of dietary crude protein and zinc levels on physical composition of 9, 10 and 11 Ribs cut (sample) of the slaughtered	67
10.	Effect of dietary crude protein and zinc levels on some blood component	70
11.	Economical evaluation of tested	73
11,	rations	85

LIST OF FIGURES

No	Title	Page
1.	Effect of dietary crude protein and zinc levels on	J
	digestion coefficients of dry matter	38
2.	Effect of dietary crude protein and zinc levels on	
	digestion coefficients of organic matter	38
3.	Effect of dietary crude protein and zinc levels on	
	digestion coefficients of crude protein	38
4.	Effect of dietary crude protein and zinc levels on	
	digestion coefficients of crude fiber	40
5.	Effect of dietary crude protein and zinc levels on	
	digestion coefficients of ether extract	40
6.	Effect of dietary crude protein and zinc levels on	
	digestion coefficients of nitrogen free extract	40
7.	Effect of dietary crude protein and zinc levels on total	
	digestible nutrients	41
8.	Effect of dietary crude protein and zinc levels on	
	digestible crude protein	42
9.	Effect of dietary crude protein and zinc levels on nitrogen	
	balance	44
10.	Effect of dietary crude protein and zinc levels on final live	
	body weight	46
11.	Effect of dietary crude protein and zinc levels on total	
	body weight gain	46
12.	Effect of dietary crude protein and zinc levels on daily	
	body weight gain	49
13.	Effect of dietary crude protein and zinc levels on total dry	
	matter intake	52
14.	Effect of dietary crude protein and zinc levels on feed	
	conversion (feed/gain)	53
15.	Effect of dietary crude protein and zinc levels on empty	
	body weight	55
16.	Effect of dietary crude protein and zinc levels on hot	
	carcass weight	57
17.	Effect of dietary crude protein and zinc levels on dressing	
	A% (relative to carcass weight)	57

18.	Effect of dietary crude protein and zinc levels on dressing B% (relative to empty body weight)	58
19.	Effect of dietary crude protein and zinc levels on lean: bone %	71
20.	Effect of dietary crude protein and zinc levels on lean: fat	71
21.	Effect of dietary crude protein and zinc levels on serum zinc concentration.	74
22.	Effect of dietary crude protein and zinc levels on serum total protein concentration	76
23.	Effect of dietary crude protein and zinc levels on serum albumin concentration	77
24.	Effect of dietary crude protein and zinc levels on serum globulin concentration	77
25.	Effect of dietary crude protein and zinc levels on serum urea concentration	79
26.	Effect of dietary crude protein and zinc levels on serum creatinine concentration	79
27.	Effect of dietary crude protein and zinc levels on serum AST concentration	82
28.	Effect of dietary crude protein and zinc levels on serum ALT concentration	82
29.	Effect of dietary crude protein and zinc levels on serum alkaline phosphatase concentration	82
30.	Effect of dietary crude protein and zinc levels on economic efficiency	84
		$^{\circ}$

ACKNOWLEDGEMENT

Sincere gratitude and appreciation are due to **Dr. Sabbah**Mahmoud Allam, professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Cairo University, for supervising this work, proposed the topic and work plan of this study.

I am deeply grateful to **Dr. Ali Mohammed Ali**, associate professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Cairo University, for supervising this work and his continuous help in statistical analysis, guiding, encouragement and reading the manuscript. I appreciate his efforts to extend and broaden my understanding of life sciences; this work could not be finished without his greatest efforts.

I would also like to express my deep gratitude to **Dr. Faten Fahmy Abou-Ammou** Chief Researcher, Animal Production
Research Institute, Ministry of Agriculture, for supervising this
work and provided me with all facilities needed for this study.

Sincere thanks are due to my parents, my husband and my sisters Enas, Dina, Doha, Manar, and Omneia for their love, patience, encouragement and confidence throughout this study.

Thank is accorded to my colleagues of husbandry lab, Sheep and Goats Research Division, Animal Production Research Institute, Ministry of Agriculture, Dr. Tarek Abd Al-Khalik, Dr. youssif Hafiz, Misses Amera Galal and Misses Rasmeia.

Cordial thanks for the staff member of Sheep and Goats branch, Malawi Station for Animal Production Research, Ministry of Agriculture; especially to **Dr Mohammed Hider** for many help in growth trail of this study.

Sincere thanks are due to my parents, my husband and my sisters Enas, Dena, Doha, Manar, and Omneia for their love, patience, encouragement and confidence throughout this study.

INTRODUCTION

Protein is a critical nutrient particularly for young rapidly growing animals. Optimal use of protein is a vital target in any practical feeding system, since protein supplements are much more expensive than energy feeds, so wasteful usage of it will increase the cost of production.

Riodran and Vallee (1976) indicated that zinc is a very important element because it acts as an activator for up to 200 metalloenzymes and hormones and it is essential for multitude of body functions. Zinc requirement for lambs is estimated to be 20-33 mg/kg DM (NRC, 1985). Kirchgessner and Heindle (1993) indicated that feeding zinc to ruminants generally improved growth performance. Moreover, zinc supplementation improved both nitrogen and energy metabolism that are cause an increase in somatotropin hormones and insulin as growth factors (Kirchgensser and Heindle, 1993). Zinc increases the activity of zinc metalloenzymes such as RNA and DNA polymerases and thymidine kinase, which are responsible for the growth, development of skeleton and synthesis of body protein (Underwood, 1981and Freeman, 1983). Zinc supplementation increases the availability of zinc to meet animal's requirement, specially if rations are containing wheat bran, cotton seeds meal or yellow corn which are rich in phytic acid content that bind with zinc forming unavailable zinc- phytate complex. In addition, zinc supplementation reduces ruminal protein degradation, increases propionate concentration and ruminal protozoa number (Froetschel et al., 1990).

Therefore, the present investigation was conducted to study the effect of zinc supplementation on metabolism and growth performance of growing lambs fed rations of different crude protein content.

REVIEW OF LITERATURE

1. Zinc supplementation

Zinc is a shiny bluish-white, soft metal with an atomic number of 30 and an atomic weight of 65.37. The metal is found naturally in ores mainly in the sulfide form. In 1877, evidence provided that zinc had a biological function (O'Dell, 1983). Zinc researches with animals were not published until 1934, where it was reported that zinc was required for rats' growth as cited in Lamand, 1984 and McDowell, 2003.

Researches indicating the importance of zinc in a domesticated animal species did not appear in the literature until 1955, when it was reported that zinc supplementation prevented a condition called parakeratosis in swine, two years later zinc was found to prevent skin lesions and poor feathering in chicks (O'Dell, 1983). In ruminants, the idea of zinc deficiency was slower to surface. Chesters (1983) was able to produce clinical zinc deficiency signs in calves when calves were fed a purified diet low in zinc. After their research, zinc deficiency in cattle was later reported under field conditions by three groups of researchers (Lamand, 1984).

a. Function of zinc

Zinc is found in all body organs and it is needed for normal hair, skin, feather, and bone growth. Zinc is linked to wound healing, where zinc is involved in the synthesis of collagen in the bone and skin. Zinc plays a role in immunity, fertility, and nearly 200 zinc metalloenzymes. These metalloenzymes include carbonic anhydrase, which is required to transfer carbon dioxide in the red blood cells, carboxypeptidase (a