New Oral Anti-coagulants In Management Of Deep Venous Thrombosis

An Essay

Submitted for Partial Fulfillment of the Master Degree in General Surgery

By

Mahmoud Ezzat Mohamed Khalil

(M.B,B.Ch)

Supervisors

Prof. Dr. Amr Ahmed Abd Elaal

Professor of General Surgery Faculty of Medicine, Ain Shams University

Dr. Abd El Rahman Mohamed Ahmed

Lecturer of General & Vascular Surgery Faculty of Medicine, Ain Shams University

Dr. Mohamed Mahmoud Zaki

Lecturer of General & Vascular Surgery Faculty of Medicine, Ain Shams University

> Faculty of medicine Ain shams University

مضادات التجلط الفموية الجديدة في علاج التجلط الوريدي العميق

بحث علمى توطئة للحصول على درجة الماجستيرفى الجراحة العامة مقدمة من الطبيب

محمود عزت محمد خليل

بكالوريوس الطب و الجراحة

المشرفون

الأستاذ الدكتور / عمرو أحمد عبد العال

أستاذ الجراحة العامة كلية الطب - جامعة عين شمس

الدكتور / عبد الرحمن محمد أحمد

مدرس الجراحة العامة وجراحة الأوعية الدموية كلية الطب - جامعة عين شمس

الدكتور / محمد محمود زكى

مدرس الجراحة العامة وجراحة الأوعية الدموية كلية الطب ـ جامعة عين شمس كلية الطب كلية الطب جامعة عين شمس

7.13

<u>Acknowledgement</u>

First and foremost, I feel always indebted to **ALLAH**, the most kind and the most merciful.

I wish to offer my great gratitude to **Dr. Amr Ahmed Abd Elaal,** Professor of General Surgery,

Faculty of Medicine, Ain shams university, for giving me
the privilege of working under his supervision, who made
the guidelines for this essay and for his generous support.

My deep gratefulness is to **Dr. Abd El Rahman Mohamed Ahmed,** Assistant Professor of Vascular Surgery, Faculty of Medicine, Ain shams university, for his guidance, discussion, generous support and careful supervision.

My deepest thanks and appreciation to **Dr. Mohamed Mahmoud Zaki,** Lecturer of Vascular Surgery, Faculty of Medicine, Ain shams university, for his continuous encouragement and careful supervision.

Mahmoud Ezzat

• Key word:

Deep venous thrombosis (DVT), New oral anticoagulants (NOACs), Rivaroxiban, Dabigatran, warfarin.

• Abstract:

Deep venous thrombosis is a major problem, because of its increased morbididty and mortality. Treatment with anticoagulations still the mainstay. New oral anticoagulants (NOACs) have advantages over VKAs and traditional treatment.

Table of Contents

Introduction	1
Aim of work	5
Chapter 1: Anatomy	6
Chapter 2: Deep Venous Thrombosis	21
Chapter 3: Treatment of DVT	54
Dicussion	110
Summary	122
References	125
Arabic summary	141

List of figures

Fig. T	itle Page no.
Figure:1	Saphenous fascia7
Figure:2	Duplex view of saph. Fascia7
Figure:3	Superficial venous system of the foot8
Figure:4	Saphenofemoral junction10
Flgure:5	Saphenopopliteal junction11
Figure:6	Variations in S.P.J12
Figure:7	Deep venous system of the foot
Figure:8	Deep venous system of the leg15
Figure:9	Common iliac vein
Figure:10	Inferior vena cava formation20
Figure:11	Vircows triad diagram34
Figure:12	Wells scoring system44
Figure:13	Micky mouse sighn in duplex47

Figure:14	Compressed&non compressed veins47		
Figure:15	Totally occluded vein with duplex48		
Figure:16	Diagram of IPG49		
Figure:17	Venogram of the left lower extremity shows thrombus in the superficial femoral and popliteal veins		
Figure:18	Diagram of normal coagulation cascade60		
Figure:19	Diagram of mech. Of action of LMWH72		
Figure:20	Diagram of mech. Of action of warfarin76		
Figure:21	Trellis peripheral infusion system107		

List of Tables

Table	Title	Page no.
Table 1	The common risk fac	etors for development of
	VTE	23
Table 2	Pharmacokinetics of	NOACs90
Table 3	Comparison studies	between NOACs
Table 3	&VKAs	114

List of Abbreviations

Abb. Meanning

ACCP American college of chest physicians

AF atrial fibrillation

APA Antiphospholipid antibodies

APTT Activated partial thromboplastin time

AT antithrombin

BD Twice daily

CFV Common femoral vein

DVT Deep venous thrombosis

FVL Factor V Leiden

FXa factor Xa

GSV Great saphenous vein

HIT Heparin induced thrombocytopenia

INR International normalized ratio

IV Intravenous

IVC Inferior vena cava

List of Abbreviations

LMWH Low molecular weight heparin

MRI Magnetic resonance imaging

NOACs New oral anticoagulants

NSAIDs Non-steroidal anti-inflammatory drugs

OD Once daily

PE Pulmonary Embolism

RCTs Randomized controlled trials

SC Sub-cutaneous

SFJ saphenofemoral junction

SPJ saphenopopliteal junction

SSV Short saphenous vein

UFH Unfractinated heparin

VKAs Vitamin K antagonists

VTE Venous Thromboembolism

Introduction

Venous thrombo-embolism (VTE) manifests as deep venous thrombosis (DVT) and/or pulmonary embolism (PE). Per 1000 persons in the general population, the annual incidence is 1 to 2 cases. Complications can occur at all stages of the disease, ranging from recurrent PE or thrombosis to post-thrombotic syndrome and death (*Eichinger.*, 2013).

For decades, the gold standard of antithrombotic therapy has been based on heparins and vitamin K antagonists (VKAs) and has successfully reduced the complications mentioned above. However, this therapy significant disadvantages; the narrow therapeutic range and the need for dosage adjustment with VKAs, interactions with food concomitant medications, and and a complicated and time consuming bridging on attempting invasive interventions (Verhamme & Bounameaux., 2014).

This has led to the development of new oral anticoagulants (NOACs) beginning in 2003. Two types of new anticoagulants have been developed: direct factor Xa inhibitors and direct factor IIa (thrombin) inhibitors (*Hirschl & Kundi.*, 2014).

thrombin inhibitors Direct selectively bind to thrombin thereby preventing sequence of events of the coagulation cascade and the conversion of fibrinogen to fibrin. Direct factor Xa inhibitors block of thrombin from generation prothrombin without relying on its physiologic inhibitor Antithrombin (McRae., 2014).

These factor Xa inhibitors and thrombin inhibitors have dose-proportional pharmacokinetics and their half-life time is

similar, ranging from a minimum of 6 to a maximum of 17 h (McRae., 2014).

The NOACs have advantages over warfarin in many of these respects, including more predictable pharmacokinetics, which eliminate the need for routine monitoring, a rapid onset of action and shorter half-life, and fewer drug and food interactions (*Hokusai.*, 2013).

The NOACs that are either approved or in late stage development include the direct factor Xa inhibitors, rivaroxaban, apixaban, and edoxaban, as well as the direct thrombin inhibitor dabigatran.

Rivaroxaban is currently FDA-approved NOAC for treatment of DVT, having been granted this approval in November 2012 (*Timothy et al.*, 2014).

The biggest drawback is uncertainty in case of bleeding due to the fact that on the contrary to VKAs. Furthermore the quantitative assessment of the drug exposure and the assessment of the anticoagulant effect in emergency or other special situations is unestablished (Agnelli et al., 2013).

An important precondition for clinical decision-making, however, is the knowledge of the specific properties of each substance, its efficacy in preventing complications and its safety with respect to side effects of anticoagulation (*Schulman et al.*, 2014).

At present Rivaroxiban, Dabigatran, Apixaban and Edoxaban are licensed for treatment and prevention of VTE and FDA-approved for this purpose(*Hurst et al.*, 2016).

All randomized controlled trials (RCTs) for this indication have already been

published and it is therefore possible and useful for future therapy decisions to summarize and compare their performance (Schulman et al., 2014).