

Faculty of Engineering Electrical Power & Machines Department

Time Varying Load Models Application for Optimal Allocation and Sizing of PV Systems in Distribution Networks

Master Thesis

By

Eng. Bassant Ahmed Elsayed Khalil

Submitted in partial fulfillment of the requirements for the Master degree in Electrical Engineering

Supervised By

Prof. Dr. Mahmoud Abdelhamed Mostafa
Dr. Mohamed Ezzat Abdelrahman Abdelghani

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

EXAMINERS COMMITTEE

Name: Bassant Ahmed Elsayed Khalil

Thesis title: Time varying load models application for optimal allocation

& sizing of PV systems in distribution networks

Degree: Submitted in partial fulfillment of the requirements for the

Master degree in electrical engineering

Name, title and affiliation

Signature

Prof. Dr. Ahdab Elmorshedy

Professor of Electric Power,

Cairo University, Egypt

Prof. Dr. Mohamed Abdelatif Badr

Professor of Electric Power,

University of Ain Shams, Egypt.

Prof. Dr. Mahmoud Abdelhamed Mostafa

Professor of Electric Power,

University of Ain Shams, Egypt.

SUPERVISORS COMMITTEE

Name: Bassant Ahmed Elsayed Khalil

Thesis title: Time varying load models application for optimal

allocation & sizing of PV systems in distribution networks

Degree: Submitted in partial fulfillment of the requirements for the

Master degree in electrical engineering

Name, title and affiliation

Prof. Dr. Mahmoud Abdelhamed Mostafa

Electrical Power and Machines Department,

Faculty of Engineering, Ain Shams University

Dr. Mohamed Ezzat Abdelrahman

Electrical Power and Machines Department,

Faculty of Engineering, Ain Shams University

STATEMENT

This Thesis submitted to Ain Shams University in partial fulfillment of the

requirements of Master degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the

department of electrical power and machines, Aviation Engineering and

Technology Institute. There no part of this thesis has been submitted for a degree or

a qualification at any other university or institution.

Name: Bassant Ahmed Elsayed Khalil

Signature:

Date: / / 2017

ACKNOLEDGEMENT

I thank God, for wisdom and knowledge that He has blessed me. You made me

strong. You gave me reasons to go and make the best out of me. You are the reason

why I am here.

I would like to thank my supervisors: Professor Mahmoud Abdelhamed Mostafa

and Dr. Mohamed Ezzat Abdelrahman for their continuous guidance, support, and

encouragement throughout my research study. They have been wonderful advisors

to me and major influence in my academic life. I could not possibly list all that I

have learned from them.

Last but not least, I am grateful for my parents, who helped me through all these.

Thank you for supporting me in every way.

Bassant Ahmed Elsayed Khalil

Cairo, 2017

ABSTRACT

Distributed Generation (DG) is widely used in distribution systems to enhance the dynamic characteristics of the network such as improving the voltage profile, minimizing active and reactive power losses. A variable voltage load model is assumed in many distribution systems. Therefore, the results are more reliable and accurate.

This thesis presents an optimal method for selection of size and site of DG unit based photovoltaic system to minimize a multi objective function that depends on active and reactive power losses and voltage deviation. This is possible by giving appropriate weight for each one of the above variables towards the design or operational limits of the PV system taking into consideration the variable load model and mixed load between residential, commercial and industrial. Optimization is made by using a new analytical method and also by using a new optimization technique which is called Big Bang-Big Crunch optimization technique which provides an effective approach for computing the sensitivity of power loss and voltage profile for active and reactive power insertion in the radial distribution system. A 33-bus test distribution system and 69-bus test distribution system have been applied to demonstrate the effect of DG on the distribution network. The Forward/Backward Sweep Load Flow technique is used in this thesis.

Table of Contents

List of Tables	. iv
List of Figures	V
List of Abbreviations	vii
List of Symbols	. ix
1. Chapter 1: Introduction	1
1.1 General	1
1.2 Solar energy and photovoltaic	2
1.2.1 Principle of Photovoltaic cell	3
1.2.2 Equivalent circuit of photovoltaic cell	4
1.2.3 Characteristics of PV module	5
1.3 Distributed generation in distribution system	6
1.3.1 Distributed generation applications	6
1.3.2 Distributed generation benefit	7
1.3.2.1 Technical benefit	7
1.3.2.2 Economical benefit	7
1.3.2.3 Environmental benefit	8
1.3.3 Distributed generation limitation	8
1.4 Thesis objectives	9
1.5 Thesis outlines	9
2. Chapter 2: Literature Survey	.11
2.1. General	.11

2.2. Benefits of the Distributed Generations	11
2.3. Siting and sizing of Distributed generation units	13
2.4. Survey for time varying load modeling	18
3. Chapter 3: Load Flow Studies for Radial Distribution	Network22
3.1. General	22
3.2. Load flow for radial distribution networks ap	plying Forward/Backward
Sweep load flow technique	22
3.2.1. Equivalent current injections (ECI)	26
3.2.2. The node-injection to branch current matrix (BIBC)26
3.2.3. Establishment of BCBV matrix	28
3.2.4. Solution procedure	31
3.3. Algorithm for the load flow in the distribution net	twork32
3.4. Load flow solution for base case	34
4. Chapter 4: Analytical Solution for Siting and Sizing of	of DGs39
4.1. General	39
4.2. Mathematical model	39
4.2.1. Load Modeling	39
4.2.2. PV module	44
4.2.3. PV Penetration Level	46
4.3. Problem Formulation	47
4.3.1. Impact indices	47
4 3 2 Multi objective Index	

4.3.3. Analytical approach sequence and steps	51
4.4. Case Study	55
4.4.1. Site of PV unit	55
4.4.2. Size of PV unit	60
4.4.3 Practical size of PV	67
5. Chapter 5: Optimization Technique for Sizing and Sitin	g of DGs69
5.1. General	69
5.2. Big Bang Big Crunch algorithm	69
5.2.1. Big Bang–Big Crunch (BB–BC) description	69
5.2.2. Algorithm of BB-BC	74
5.2.3. Advantage of BB-BC procedure	75
5.3. Objective function of optimal location of PV	76
5.4. Case study for BB-BC optimization algorithm	79
6. Chapter 6: Conclusion and Future Work	82
6.1. Conclusion	82
6.2. Future work	83
Reference	84
Annandiv	0.4

List of Tables

Table 4.1: Load component of case study through day	42
Table 4.2: Load type and exponents for voltage dependent loads	42
Table 4.3: PV module characteristics	45
Table 4.4: Result of AIMO at K _{PV} equal 0.8	61
Table 4.5: Result of AIMO at K _{PV} equal 1	61
Table 4.6: Result of AIMO at K _{PV} equal 1.2	62
Table 4.7: Result of AIMO at K _{PV} equal 1.6	62
Table 4.8: Result of AIMO at K _{PV} equal 2.1	63
Table 4.9: Result of AIMO at K _{PV} equal 2.5	63
Table 4.10: Result of AIMO at K _{PV} equal 3	64
Table 4.11: Result of AIMO at K _{PV} equal 4	64
Table 4.12: Result of AIMO at K _{PV} equal 4.5	65
Table 4.13: Result of AIMO at K _{PV} equal 4.6	65
Table 4.14: Result of AIMO at KPV equal 4.7	66
Table 4.15: Result of AIMO at K _{PV} equal 5	66
Table 5.1: losses of 33-bus test system with and without PV	80
Table 5.2: losses of 69-bus test system with and without PV	81

List of Figures

Figure 1.1: Diffusion current, drift current and depletion zone of a p-n junction	3
Figure 1.2: Solar cell equivalent circuit model	4
Figure 1.3: Output I-V characteristic of PV module 36 cells in series	5
Figure 1.4: Output P-V characteristic of PV module	6
Figure 3.1: Illustration of two nodes in a distribution line	23
Figure 3.2: Simple distribution system	26
Figure 3.3: BIBC matrix formation	28
Figure 3.4: BCBV matrix formation	30
Figure 3.5: Flowchart for load flow solution for radial distribution networks	34
Figure 3.6: 33-bus test distribution system.	35
Figure 3.7: 69-bus test distribution system.	35
Figure 3.8: Magnitude of the node voltage of base case of 33-bus test distribu	ıtion
system	36
Figure 3.9: Magnitude of the branch current of base case of 33-bus test distribu	ıtion
system	37
Figure 3.10: Magnitude of the node voltage of base case of 69-bus test distribu	ıtion
system	37
Figure 3.11: Magnitude of the branch current of base case of 69-bus test distribu	ıtion
system	38
Figure 4.1: Daily load curve for different consumers	40
Figure 4.2: Voltage magnitude of constant power load model and time varying l	load
model for 33-bus test distribution system	43
Figure 4.3: Voltage magnitude of constant power load model and time varying	load
model for 69-bus test distribution system	43
Figure 4.4: Expected solar irradiance hourly	44

Figure 4.5: Expected output PV power hourly46
Figure 4.6: Radial distribution network: (a) without PV and (b) with PV48
Figure 4.7: Flow chart for analytical approach54
Figure 4.8: IMO at each bus from 1 am to 6 am
Figure 4.9: IMO at each bus from 7 am to 12 am56
Figure 4.10: IMO at each bus from 1 pm to 6 pm
Figure 4.11: IMO at each bus from 7 pm to 12 pm57
Figure 4.12: ILP at various buses for 33-bus system
Figure 4.13: ILQ at various buses for 33-bus system
Figure 4.14: IVD at various buses for 33-bus system
Figure 4.15: IMO at various buses for 33-bus system
Figure 4.16: PV size with respect to AIMO67
Figure 4.17: Hourly expected PV outputs at bus 6 for the 33-bus system68
Figure 5.1: First propagate of candidate solutions for two-dimensional case where
the parameters represented by 'x1 and x2' and their respective center of mass is
symboling with 'o' for the Rosenbrock function70
Figure 5.2: scattered of candidate solutions for two-dimensional case where the
parameters represented by 'x1 and x2' and their respective center of mass donated
with 'o' for the Rosenbrock function after the 4th iteration72
Figure 5.3: Gathering of nominee solutions proceeding center of mass once 500th
iteration73
Figure 5.4: Flowchart for BB-BC algorithm75
Figure 5.5: Flow chart of PV allocation with BB-BC
Figure 5.6: 33-bus test distribution system
Figure 5.7: 69-bus test distribution system
Figure 5.8: IMO at various buses for 69-bus system

List of Abbreviations

PV: Photovoltaic

MPP: Maximum Power Point

DG: Distributed Generation

O&M: Operation and Maintenance

T&D: Transmission and Distribution

GA: Genetic Algorithm

SA: Simulated Annealing

TRANSCOs: Transmission Companies

DISCOs: Distribution Companies

GUI: Graphical User Interface

ABC: Artificial Bee Colony

MVA: Mega Volt Ampere

MINLP: Mixed Integer Non-Linear Programming

DNO: Distribution Network Operators

RDN: Radial Distribution Network

ECI: Equivalent Current Injections

BIBC: Node Injection to Branch Current Matrix

BCBV: Branch Current to Nodule Voltage Matrix

IB: Branch Current

KCL: Kirchhoff's Current Low

KVL: Kirchhoff's Voltage Low

IMO: Multi Objective Index

AIMO: Average Multi Objective Index

ILP: Active Power Loss Index

ILQ: Reactive Power Loss Index

IVD: Voltage Deviation Index

VD: Voltage Deviation

BB-BC: Big Bang Big Crunch

List of Symbols

R_P: Shunt resistor

R_s: Series resistance

I_L: Photo generated current

m : Ideality factor for diode

I_o: The diode reverses saturation current

q : The elementary charge

k : Boltzmann's constant

T : absolute temperature

I_s: Drift current

I_D: Diffusion current

 P_{K} : Real power injection at bus k

 Q_K : Reactive power injection at bus k

 $P_{oK}\;$: Active load at bus k at nominal voltage

 $Q_{oK}\,:$ Reactive load at bus k at nominal voltage

 V_K : The voltage at bus k

n_P : Active load voltage exponent

n_q : Reactive load voltage exponent

FF: fill factor

V_{MMP}: Voltage at maximum power point

 $I_{\mbox{\scriptsize MMP}}\,:$ Current at maximum power point

V_{o.c} : Open circuit voltage (v)