

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Ain Shams University Faculty of computer and information sciences Department of Information System

DELIBERATION PROCESS MECHANISM FOR SOFTWARE DEVELOPMENT

Thesis submitted for partial fulfillment of master degree in information system

By Rania Abd El-Rahman El-Gohary

Under Supervision of:

Prof. Dr. Ahmed. M. Hamad

Prof. Of Computer Systems
Vice Dean for Environment and Community Affairs

Dr. Osman. M. Ibrahim

Consultant of information systems Egyptian military forces

November 2002

Acknowledgement

First and foremost, I would like to thank *Allah* for giving me the opportunity and the strength to accomplish this work.

I'm deeply indebted to **Prof. Dr. Ahmed Mohamed Hamad** for providing the different facilities to carry out this work, for his great care, valuable advises, and helpful guidance through the work. For giving me the chance to work under his supervision.

I wish to express my deep gratitude to **Dr. Osman Mohamed Ebrahim** for planning and full supervision of this work, continuous advises, guidance and greatest help in interpretation of the results. For giving me the chance to work under his supervision, for his continuous support and for his periodic and careful evaluation of my work.

I wish to record my grateful thanks to **Prof. Dr. Mohamed .F. Tolba** (Vice president of ain shams university and Ex-Dean of faculty of computers and information sciences) and for **Prof. Dr. Mohamed .S. Abd El-wahab** (Dean of faculty of computers and information sciences) for their encouragements and their continuous care.

My grateful thanks too, to staff of faculty of computers and information sceinces, who encourage me too much during the progress of the work., and to my colleagues for their continuous assistance.

Last but no means least, I am most grateful to my family, for their full support and encouragement.

Publications

Rania El-Gohary

- [1] Ahmed Hamed, Osman Ebrahim and Rania Elgohary "A model for the deliberation process in software systems development" Proceedings of the Conference on Intelligent Computing and Information Systems, ICICIS, Cairo, Egypt, June 24-26, 2002, pp. 339-345.
- [2] Ahmed Hamed, Osman Ebrahim and Rania Elgohary "SUPPORTING DELIBERATION PROCESS MECHANISM FOR SOFTWARE SYSTEMS DEVELOPMENT" 7th International Conference On Intelligent Engineering Systems INES 2003, March 4- 6 Assiut Luxor, Egypt
- [3] Ahmed Hamed, Osman Ebrahim and Rania Elgohary "SUPPORTING PARALLEL ELICITATION OF SOFTWARE SYSTEMS REQUIREMENTS" ICEIS2003 5th International Conference on Enterprise Information IEEE international conference in France.
- [4] My thesis

Ahmed Hamed, Osman Ebrahim and Rania Elgohary "deliberation process mechanism for software development" ain shams university, faculty of computer and information sciences, information systems department.

Abstract

ABSTRACT

The early portion of software development process is missing automated support for many important activities that help firm up requirements and control the system design and evolution to satisfy customers' real needs.

This thesis introduces an improved formal model for requirements elicitation and evolution along with an implemented software tool based on the model. This tool with its associated database and other artifacts enabled by the model is used to capture stakeholders' criticisms to requirements and map these criticisms into the model objects to be used in synthesizing a set of open issues to be resolved.

These issues are resolved by examining and modifying requirements if necessary, and then propagating the change down in the requirements hierarchy in a consistent and controlled manner.

The issue resolution process is conducted by all relevant stakeholders supported by automated deliberation facility embedded in our software implementation of an enhanced formal deliberation model. The objects and process assist stakeholders to individually evaluate and judge different available alternatives to resolve an issue.

This outcome of the deliberation process is a change request that identify the affected requirement component in the requirements hierarchy that should be manipulated (added, changed, and/or deleted) to resolve the issue. The outcome reflects the group decision of selecting one of the available alternatives to resolve the issue.

Abstract

To reach to such a decision, the software mechanism that implements our model provides each stakeholder involved in the deliberation process with the interface and the representation for him to conduct an independent and quantified judgment. The mechanism, then formally combines these individual judgment into a group decision that takes the form of a certified change request.

Our model combines, augments, and enhances well-known models that have being used by practitioners for a long time despite the defincies in each model. Throughout the thesis, we spot such defincies and show how alleviates them using our improved model.

The first of these models is issue-based-information systems (IBIS) that view a complex system development process as basically a deliberation among stakeholders to resolve the development issues.

Our model extends the IBIS model by making it more formal and hence increase it representation power. This improvement is the outcome of enriching the IBIS with more types and relationships that do not exist in the original model.

We also augmented our improved version of IBIS with a second formal model that provides automated assistance in the process of choosing for available alternatives to resolve an issue. This second model is based on our improved version of the analytical hierarchy process (AHP) that has being used in decision making by choosing among alternatives based on unbiased and quantified judgment mechanism.

Table Of Contents

Cl	Chapter P		
1	Intr	roduction	_
	1.1 1.2 1.3 1.4 1.5	Introduction Design Rationale And Deliberation Models Requirements Elicitation And Missing Objectives Thesis Outlines	1 4 6 7 8
2	Tecl	hnical Background And Previous Work	. 9
	2.1	Deliberation Process	. 9
	2.2	IBIS And Related Models	13
	2.3	Non- IBIS Models	22
	2.4	Methodological Framework And AHP Model	28
	2.5	Comparison Between Models	30
3	The	e Proposed Q-IBIS Model	31
	3.1	Introduction	31
	3.2	Supporting Stakeholder Deliberation And Judgment	31
	3.3	Multi-Level Hierarchy Decision	38
	3.4	Improvement Of The AHP	. 39
	3.5	The Q-IBIS Proposed Model	47
	3.6	The Application Of The Improved AHP	52
4	Sys	tem Implementation	56
	4.1	Introduction	56
	4.2	Overall Description	58
	4.3	System Analysis	60
	4.4	System Features	66

7	App	oendix A&B In Separate Vol	ume
6	Co	nclusions And Future Work	103
	5.4	Detailed Study	88
	5.3	Synthesizing Issues From Stakeholders' Concerns	82
	5.2	The Requirements Set	79
	5.1	Introduction	77
5	Cas	e Study for Air Traffic Control Systems	77
	4.6	System Processes	74
	4.5	System Goal	70

List Of Figures

Figure 1.1	Requirement Analysis Phases	3
Figure 2.1	Ibis Model Types And Relationships.	13
Figure 2.2	The Inquiry Cycle	15
Figure 2.3	The QOC Notation	21
Figure 3.1	An Importance Matrix M	34
Figure 3.2	The Matrix M1 And The Priority Vector.	35
Figure 3.3	Combing Individuals Judgments Into A Group	4 5
Figure 3.4	Decision	45
Figure 4.1	The Proposed Model	49
· ·	Systems Implementation Phases	57
Figure 4.2	The Q-Ibis System Contexts	60
Figure 4.3	The Entity Relationship Diagram	61
Figure 4.4	Combining Individuals Judgments Into A	
T' 4.5	Group Decision	68
Figure 4.5	The Individual Judgments Profile	74
Figure 4.6	State-Transition Diagrams For Issue	
	Statuses	75
Figure 5.1	The Current State Of The Requirement	
	Components	81
Figure 5.2	The Current State Of The Requirement	
	Components Snapshot	81
Figure 5.3	The Stakeholders Of The System Snapshot	82
Figure 5.4	The Issue 1 Definition Of The System	
T	Snapshot	85
Figure 5.5	The Issue 2 Definition Of The System	0.6
Figure 5.6	Snapshot Of The Section	86
rigule 3.0	The Issue 3 Definition Of The System	87
Figure 5.7	Snapshot The Available Alternative 1 Snapshot	89
Figure 5.8	The Available Alternatives To Resolve	07
1 15010 5.0	The Issue3	91
Figure 5.9	The Pairwise Comparisons Of Criteria For SH4	94

Figure 5.10	The Decision Problem Hierarchically	95
Figure 5.11	The Intermediate Computations Snapshot	96
Figure 5.12	The Pairwise Comparisons Of Alternatives	
	Of A Specified Issue For SH 4	98
Figure 5.13	The Stakeholders Weighted Average	100
Figure 5.14	The Group Priority Vector Of The Alternatives.	101
Figure 5.15	The Change Request Snapshot	102

List Of Tables

Table 2.1	Fundamental Scales For Pairwise Comparisons	29
Table 3.1	The Pairewise Comparison Scale	37
Table 3.2	The Exponential Scale	41
Table 3.3	Stakeholders' Weights	43
Table 5.1	The Ranking List For Five Stakeholders.	92
Table 5.2	Pairwise Comparisons Of Criteria For SH 4	94
Table 5.3	Pairwise Comparisons Of Criteria And	
	Priority Vector For SH 4	96
Table 5.4	The Composite Priority Vector Of The Alternatives	97
Table 5.5	The Stakeholders Weighted Average	100
Table 5.6	The Group Priority Vector Of The Alternatives	100