

Production of Chitosan by Some Fungi and Its Industrial Applications

Thesis Submitted for the award of the degree of doctor philosophy in microbiology

By

Nermein Mohammad Gomaa El-Sayed

(M.Sc. in Microbiology, 2008, Ain Shams University)

Supervisors

Prof. Fawkia M. EL-Beih

Professor of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Prof. Hala Ahmed Hussien

Professor of Microbiology Radiation Microbiology Department, National Center for Radiation Research and Technology Atomic Energy Authority

Dr. Einas Hamed El-Shatoury

Associate Professor of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Prof. Hesham Mahmoud Swailam

Professor of Microbiology-Head of Radiation Microbiology Department, National Center for Radiation Research and Technology-Atomic Energy Authority

Dr. Khaled Zakaria El-Baghdady

Associate Professor of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

> Microbiology Department Faculty of Science Ain Shams University 2017

Faculty of Science Microbiology department

Production of Chitosan by Some Fungi and Its Industrial Applications By

Nermein Mohammad Gomaa El-Sayed

Assistant Lecturer National Center for Radiation Research and Technology, Atomic Energy Authority

> M. Sc. Microbiology 2008 Ain-Shams Univesity, Faculty of Science

Thesis
Submitted for Ph. D. Degree in Microbiology

Microbiology Department Faculty of Science Ain Shams University 2017

Faculty of Science
Microbiology department

Approval sheet

Name: Nermein Mohammad Gomaa El-Sayed

Title: "Production of Chitosan by Some Fungi and Its Industrial Applications."

This thesis for PhD degree has been approved by the following

Committee:

1-Prof. Dr. Mohamed Farouk Ghaly.

2-Prof. Dr. Mehreshan Taha El-Mokadem.

3-Prof. Dr. Hala Ahmed Hussien.

4- Dr. Khaled Zakaria El-Baghdady.

Date of Examination

Acknowledgement Acknowledgement Acknowledgement

First of all, all gratitude is due to **Allah** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my special and scincere thanks to **Prof. Dr. Fawkia Mohammed El-Beih,** Professor of Microbiology, Faculty of Science, Ain Shams University.

My deep gratitude to **Dr. Khaled Zakaria El-Baghdady** and **Dr. Einas Hamed Elshatoury.** I am grateful to them for introducing me into this fascinating topic of study and their support. Thanks for their constructive keen supervision, valuable suggestions and encouragement throughout the course of this work.

It is really too hard for me to find the words those could express my sincere respect, thanks and gratitude to **Prof. Dr. Hesham Mahmoud Swailam;** Professor of Microbiology (NCRRT), Microbiology Department, Atomic Energy Aurthority (AEA).

My respect and full thanks also are going to **Prof. Dr. Hala Ahmed Hussien;** Professor of Microbiology (NCRRT),
Microbiology Department, Atomic Energy Aurthority (AEA).

Finally, all of my sincere evaluation for those who helped me or tried to help. Even the help was too little, it remained and will not be forgotten. I would like to pay thanks to all staff members of microbiology department, Ain Shams University for their sincere help and support.

Contents

	Subject	Page
I	Introduction	1
	Aim of the work	5
	Literature Review	6
1	Chitin and chitosan structure	6
2	Existence of chitosan in microrganisms	8
3	Advantages of fungal chitosan over crustacean	13
4	Properties and characteristics of fungal chitosan	14
5-1	Chitosan production under optimized fermentation process	22
5-2	Fungal chitosan production using low-cost wastes	26
6	Chitosan Applications	31
6-1		34
6-2	1 1	40
7	Gamma Radiation	51
7-1	Units of measuring ionizing radiation:	52
7-2		52
	radiation on the microorganisms:	
II	Materials and Methods	57
1	Materials:	57
1-1	Media	57
1-2	Chemicals and Reagents:	60
2	Methods:	60
2-1	Isolation, survey and identification of isolated	60
	fungi from soil:	
2-2	Preparation of the fungal spore suspensions:	61
2-3	Selection of the fungus with the highest	62
	chitosan content:	
2-4	Dry weight determination	63
2-5	Fungal chitosan extraction	63
2-6	Reducing sugar determination:	64

	Subject	Page
2-7	Ninhydrin assay	64
2-8	Preliminary identification of the fungal isolates:	65
2-9	Molecular identification and Phylogenetic profile of the selescted fungal isolate:	66
2-10	Chitosan extraction from Shrimp shells	66
2-11	Environmental conditions affect the fungal chitosan production:	68
2-12	Fermentation using low cost media for chitosan production:	72
2-13	Effect of gamma irradiation on chitosan production	73
2-14	Adsorption capacity of chitosan	74
2-15	Assessment of chitosan antimicrobial activity	75
2-16	Physicochemical characterization of chitosan:	76
2-17	Statistical analysis	79
III	Results	80
1-1	Isolation and identification of chitosan producing fungi	80
1-2	Fungal chitosan detection	80
1-3	Molecular identification and phylogeny of Rhizopus oryzae:	82
2	Extraction of crustacean chitosan from shrimp shells	84
3	Characterization of Chitosan Properties:	84
3-1	Fourier Transform Infrared spectrophotometry (FTIR):	85
3-2	Transmission electron microscopy (TEM)	89
3-3	X-ray diffractometry (XRD)	93
3-4	Studying chitosan viscosity	95
3-5	Thermo Gravimetric Analysis (TGA):	97
4	Chitosan production process	99
4-1	Physical factors of fermentation process:	100
4-2	Nutritional factors:	113

	Subject	Page
5-	Chitosan applications:	119
5-1	Assessment of copper sulphate adsorption by chitosan:	119
5-2	Assessment of chitosan antimicrobial activity:	122
6-	Using low-cost agroindustrial wastes in fungal chitosan production:	124
5-1	Production of chitosan in PMY medium:	124
5-2	Production of chitosan in WBG medium:	126
5-3	Natural molasses-wheat bran medium:	128
7.	Gamma Radiation	136
7-1	Irradiation of <i>R. oryzae</i> spore suspension:	136
7-2	Gamma irradiation of chitosan powder:	142
IV	Discussion	144
V	Conclusion	181
VI	Summary	182
VII	Recommendations	186
VIII	References	187
IX	Arabic summary	

List of Tables

Table	Subject	Page
1	Preliminary identification of fast growing fungi recovered from isolation medium	80
2	Screening for potent fungal isolate producing chitosan	82
3	Rhizopus sp. 18S ribosomal RNA gene, partial sequence	83
4	FT-IR Characterizing peaks of chitosan	88
5	The deacetylation degrees of different	88
	chitosan samples	
6	XRD analysis of different chitosan samples	94
7	Comparison of viscosities bteween	96
_	different chitosan types	
8	Molecular weight (kDa) of different types	96
0	from chitosan powder	107
9	Effect of incubation temperature on	107
10	production of fungal chitosan	108
10	Effect of agitation rate on fungal chitosan production	100
11	Effect of pH on fungal chitosan production	109
12	Effect of spore suspension age on fungal	110
12	chitosan production	110
13	Effect of incubation time on <i>R. oryzae</i>	111
	chitosan production	
14	Effect of different R. oryzae on inoculum	112
	volumes on chitosan production	
15	Effect of different carbon sources added	114
	to the fermentation medium on fungal	
	chitosan production	
16	Effect of different nitrogen sources added	116
	to the fermentation medium on fungal	
. –	chitosan production	4.0
17	Effect of mineral addition on fungal chitosan	118

Table	Subject	Page
18	production Adsorption capacities of fungal, crustacean and fungal chitosan samples incubated with 10 mg/l CuSO ₄ for different time periods	120
19	Adsorption capacities of fungal, crustacean and fungal chitosan samples incubated with 130 mg/l CuSO ₄ for different time periods	120
20	Adsorption capacities of fungal, crustacean and fungal chitosan samples incubated with 260 mg/l CuSO ₄ for different time periods	121
21	Antibacterial activity of different chitosan types on some pathogenic bacteria	123
22	Substituting glucose by different conceentrations of molasses in PMY medium for <i>R. oryzae</i> chitosan production	125
23	Chitosan production in WBG medium	127
24	R. oryzae chitosan in low-cost MWB medium	129
25	FT-IR peaks of R. oryzae chitosan grown in MWB	131
26	XRD analysis of <i>R. oryzae</i> chitosan (F2) grown on MWB medium	132
27	Viscosity measurment of <i>R. oryzae</i> chitosan grown on MWB medium	134
28	Effect of Gamma irradiation of spore suspention on chitosan production by <i>R. oryzae</i>	137
29	Comparison between the initial conditions and the final optimized conditions in production of <i>R. oryzae</i> chitosan	139
30	R. oryzae chitosan in semisynthetic and natural media inoculated with 6 Gyirradiated spores	141

Table	Subject	Page
31	Comparing viscosities of different	143
32	irradiated chitosan types with 10 kGy Average molecular weights (kDa) of	143
32	different 10 kGy-irradiated chitosan types	143

List of Figures

	S	
Fig.		Pages
No.	C	7
1	Structure units of chitosan, chitin and cellulose	7
2	Bioconversion of chitin using chemical and enzymatic extraction	11
3	Application of chitin/chitosan	33
4	Glucosamine standard curve	81
5	Gel electrophoresis of genetic material of	84
	Rhizopus oryzae locally isolated from Egyptian ehydrate i soil sample	
6	FTIR peaks of the standard chitosan	87
7	FTIR peaks of the extracted crustacean	87
,	chitosan	07
8	FTIR peaks of the extracted <i>R.oryzae</i> chitosan	87
	in PGY medium	
9	TEM of standard chitosan	90
10	TEM photo of crustacean chitosan	91
11	TEM photo of fungal chitosan (F1)	92
12	XRD crystallography differactometry of	94
	standard chitosan	
13	XRD crystallography differactometry of	95
	shrimp shells crustacean chitosan	
14	XRD crystallography differactometry of	95
	fungal chitosan (F1)	
15	Thermogravimetric pattern of standard	98
	marine chitosan	
16	Thermogravimetric pattern of crustacean	98
	shrimp shell chitosan	
17	Thermogravimetric pattern of <i>R. oryzae</i>	99
1,	chitosan	
18	Effect of incubation temperature on	107
10	production of fungal chitosan	107
19	Effect of agitation rate on fungal chitosan	108
1)	production	100
	production	

iv

Fig.		Pages
20	Effect of pH on fungal chitosan production	109
21	Effect of spore suspension age on fungal chitosan production	110
22	Effect of incubation time on <i>R. oryzae</i> chitosan	111
23	Effect of Inoculum volume on fungal chitosan production	112
24	Effect of carbon source on fungal chitosan production	115
25	Effect of nitrogen source on fungal chitosan production	117
26	Effect of mineral addition on fungal chitosan production	118
27	Figure (26): Photos illustrated antimicrobial	123
28	activity of different chitosan solutions. Substituting glucose by different conceentrations of molasses in PMY	126
	medium for <i>R. oryzae</i> chitosan production	
29	Chitosan production in WBG medium	128
30	FTIR peaks of the extracted <i>R.oryzae</i> chitosan in MWB medium	130
31	XRD analysis of fungal chitosan sample (F2)	132
32	Thermogravimetric pattern of Rhizopus oryzae chitosan grown in MWB	133
33	TEM of <i>R. oryzae</i> chitosan (F2)	135
34	Effect of different γ -radiation doses on fungal chitosan production	138
35	Comparison between the priliminary reviewed-experiment and the optimized-experiment in production of <i>R. oryzae</i> chitosan	140
36	chitosan production by <i>R.oryzae</i> separately grown in low cost media	141

V

Abbreviation list

AIM	Alkali-insoluble matter
CDM	Cell dry mass
СН	chitin
CHS	Chitosan
CHS1	Chitosan:cell dry mass
CHS2	Chitosan:alkali-insoluble matter
DA	degree of acetylation
DD	Deacetylation degree
F1	Rhizopus oryzae chitosan, grown in PGY
F2	Rhizopus oryzae chitosan, grown in MWB
FTIR	Fourier-Transmission Infra Red
GlcN	glucosamine
Gy, Kgy	Gray, KiloGray; measuring units of gamma radiation
HMWc	High molecular weight chitosan
LMWc	Low molecular weight chitosan
MWB	Molasses wheatbran low cost natural medium
PGY	Peptone glucose yeast medium
TEM	Transmission electron microscope
TGA	Thermogarvimetric analysis
XRD	X ray diffractometry

ABSTRACT

Chitosan production from microorganisms is the main aim of this research. Seventeen fungi were isolated from agricultural soil located in Cairo, Egypt. These isolated fungi were priliminary identified and screened for chitosan content. The best chitosan producer with the highest chitosan content was Rhizopus oryzae. The chitinious matter was 255.0 mg/g. The fungus was identified using 18S rRNA revealing it was *Rhizopus oryzae 1.3.32.* Crustacean chitosan was extracted to be compared with the fungal chitosan. It was extracted from shrimp shells with 16% chitosan content. Chitosan samples were characterized by Fourier Transmission Infra Red spectrophotometery, Xray diffiraction viscosity analysis and themogravimetry (TGA). One way fermentation experiments were carried out to optimize the environmental conditions including; temperature, agitation, pH, inoculum size, spore age, carbon source, nitrogen source and minerals addition) which gave the maximum chitosan production by Rhizopus oryzae. Fungal chitosan was tested for its adsorption ability with Cu++ in the form of cupper sulphate compared with the standard and crustacean chitosan. All chitosan samples showed potential ability to adsorb Cu⁺⁺ in aqueous solution. Fungal chitosan showed high spectrum antibacterial activity. The bacteria were Staphylococcus aureus, Streptococcus epidermidis, Staphylococcus aureus, two isolates of Escherichia coli1, Escherichia coli2 and Pseudomonas aeruginosa. In a trial to decrease the costs, a substitution of some components in PGY occurred. Molasses was added to Peptone yeast forming peptone molasses yeast (PMY) medium. Wheat bran was also added to glucose to form wheat bran-glucose (WBG) medium. the medium yielde higher fungal chitosan was PMY since the chitosan was 137.1 mg/g. A mixture of molasses and wheat bran (MWB) medium was tested as a fermentation medium and the chitosan yield was 50.83 mg/g. Chitosan from Rhizopus