Clinical Utility of Serum Chemerin as a Novel Marker of Metabolic Syndrome and Type 2 Diabetes Mellitus

Thesis

Submitted for the Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Nesreen Ahmed Badawy Ahmed Mayhoub M.B., B.Ch., Ain Shams University

Supervised by

Professor / Mona Mostafa Osman Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Professor / Karim Yehia Shaheen Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Doctor / Rania Salah El Din Kamle Shahin Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgement

Above all and first of all; all thanks to **ALLAH**, the source of all knowledge, by WHOSE abundant aid this work has come to fruition.

It has been a great honor to proceed into this work under the supervision of **Professor/ Mona Mostafa Osman**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain shams University. I am greatly indebted to her for suggesting and planning the subject, supervising the whole work, reading and criticizing the manuscript. I will never forget her unlimited help, continuous support, kind encouragement, constructive criticism and wise guidance.

I would like also to express my sincere gratitude and appreciation to **Professor/Karim Yehia Shaheen,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain shams University, who offered much of his time and advice for suggesting, reading and supervising throughout this work. To him words of praise are not sufficient.

I'm particularly very grateful to **Doctor/ Rania \$alah El Din Kamle \$hahin**, Lecturer of Clinical and Chemical Pathology,
Faculty of Medicine, Ain Shams University, for her helpful guidance, valuable advice, meticulous care, great effort and generous help and support. She offered me much of her time and advice to accomplish this work.

🖎 Nesreen Ahmed Badawy

List of Contents

<u>Title</u>	Page No.
List of Contents	i
List of Abbreviations	iv
List of Tables	viii
List of Figures	ix
Introduction and aim of the work	1
Review of Literature:	
Chapter I- Diabetes Mellitus	5
A- Introduction	
B- Definition	5
C- Epidemiology and Prevalence	5
D- Classification	
1- Etiological Classification of Diabetes Mellitus	88
(a) Type 1 diabetes mellitus	8
(b) Type 2 diabetes mellitus	10
(i) Incidence and prevalence	10
(ii) Risk factors	10
(iii) Pathogenesis	
(iv) Complications of type 2 DM	16
 Acute complications 	17
• Chronic complications	
(c) Other specific types of diabetes mellitus	
(d) Gestational diabetes mellitus	
2- Categories of Increased Risk for Diabetes	22
(a) Impaired glucose tolerance	
(b) Impaired fasting glucose	23
(c) Hemoglobin A1C levels of 5.7-6.4%	24
E- Diagnosis of Diabetes Mellitus	
1- Clinical Diagnosis	
2- Laboratory Diagnosis	
3- Monitoring Patient Compliance to Treatment	
4- Diagnosis of Diabetic Complications	
Chapter II- Metabolic Syndrome	
A- Introduction	30

B- Definitions of the Metabolic Syndrome	31
1- Brief History	
2- Diverging Definitions	31
C- Epidemiology and Prevalence of the Metabolic	
Syndrome	36
1- Prevalence Estimates According to Sex	
2- Prevalence Estimates According to Race/Ethnicity	
3- Prevalence Estimates According to Age	
4- Prevalence Estimates According to Smoking and	
Lifestyle	38
D- Pathophysiology of the Metabolic Syndrome	
1- Insulin Resistance and Metabolic Syndrome	
(a) Definition of insulin resistance	
(b) Structure of insulin receptor	
(c) Physiology of insulin action	
(d) Pathophysiology of insulin resistance	
(e) Causes of insulin resistance	
(f) Laboratory assessment and measurement of insulin	
	45
(g) Insulin resistance in various organs and its relation	
with the metabolic syndrome	48
2- Obesity and Metabolic Syndrome	
3- Hypertension and Metabolic Syndrome	
4- Proinflammatory Molecules and Metabolic Syndrome	
(a) C-reactive protein (CRP)	
(b) Tumor necrosing factor-α (TNF-α)	
(c) Resistin	
(d) Interleukins	
(e) Visfatin	
(f) Adiponectin	
5- Other Contributors to Metabolic Syndrome	59
6- Genetic Determinants of Metabolic Syndrome	
E- Risks of the Metabolic Syndrome	
1- Cardiovascular Disease	
2- Type 2 Diabetes Mellitus	
F- Associated Conditions of the Metabolic Syndrome	
1- Nonalcoholic Fatty Liver Disease	65

2- Polycystic Ovarian Syndrome	66
3- Obstructive Sleep Apnea	
4- Hypogonadism and Menopause	
5- Lipodystrophy	
6- Microvascular Disease	
G- Management of the Metabolic Syndrome	68
Chapter III- Chemerin	
A- Introduction	
B- Structure	71
C- Distribution	
D- Activation	
E- Receptors	
F- Mode of Action	
G- Physiological Role of Chemerin	
H- Pathophysiological Role of Chemerin	
1- Role in Chemotaxis and Inflammation	
2- Role in Diabetes	
3- Role in Obesity and Metabolic syndrome	83
4- Role in Blood Pressure Regulation	
5- Role in Atherosclerosis	
6- Role in Psoriasis	86
7- Role as a Biomarker in Tumors	86
I- Methods of Assay of Chemerin	87
1- Enzyme Linked Immunosorbent Assay	87
2- Reverse Transcriptase Polymerase Chain Reaction	89
3- Immunohistochemistry	
4- Western Blot Technique	
Subjects and Methods	98
Results	
Discussion	127
Summary and Conclusion	
Recommendations	
References	
Arabic Summary	

List of Abbreviations

ADA	. American Diabetes Association
ADLS	. Atopic dermatitis lesional skin
AHA-NHLBI.	. American Heart Association and the National
	Heart Lung and Blood Institute
Apo A1	. Apolipoprotein A1
Apo B	. Apolipoprotein B
	. Aortic stenosis
AT1-R	. Angiotensin 1 receptor
AUC	. Area under curve
BMI	. Body mass index
CABG	Coronary artery bypass graft
CAD-risk	. Coronary arterial disease risk
c-AMP	. Cyclic adenosine monophosphate
CCNB2	
CCRL2	. Chemokine (C-C motif) receptor like 2
cDNA	. Complementary DNA
CE	. Cholesterol esterase
CETP	. Cholesteryl ester transfer protein
CHD	. Coronary heart disease
ChemR23	. Chemerin receptor 23
	. Confidence interval
CMKLR1	. Chemokine-like receptor-1
CRP	. C-reactive protein
	. Coefficient of variation
	. Cardiovascular disease
	. Diastolic blood pressure
	. Dendritic cells
	. Diabetic ketoacidosis
	. Diabetes mellitus
	. Deoxynucleotides
EGIR	. European Group for the Study of Insulin
	Resistance
ELISA	. Enzyme linked immunosorbant assay

ERK 1/2	Extacellular signal regulated kinase 1 and 2
	Fasting blood glucose
	Fasting blood sugar
	Fasting blood insulin
	Free fatty acids
	. Fluorescein isothiocyanate
FN	· · · · · · · · · · · · · · · · · · ·
FP	<u> </u>
	. Fasting plasma glucose
	. 65-kD isoform of glutamic acid decarboxylase
	. Glucose challenge test
	. Gestational diabetes mellitus
	. Glucose transporter 4
	. G protein coupled receptor 1
	. Hemoglobin A1C (Glycated hemoglobin)
	. High density lipoprotein cholesterol
	. Hyperglycemic hyperosmolar state
HMW	. High molecular weight
	. Homeostatic model assessment of insulin
	resistance
	. Highly significant
HSL	. Hormone-sensitive lipase
	. Heat shock proteins
HTR2B	. Hydroxytryptamine receptor 2B
IA-2A, IA-2βA	Insulinoma-associated antigens
IAAs	. Insulin auto-antibodies
	. Islet cell cytoplasmic auto-antibodies
	. Insulin dependent diabetes mellitus
	. International Diabetes Foundation
	. Impaired fasting glucose
	. Impaired glucose tolerance
IL-1β	
IL-6	
IL-10	
IL13RA2	. Interleukin-13 receptor alpha2

IL-18	Interleukin-18
INF-γ	
	Insulin resistance
IRS-1	Insulin receptor substrate-1
LA	
LDL-C	Low density lipoprotein cholesterol
	Lipoprotein lipase
LS	
LV	Liver tissue
MCP-1	Monocyte chemotactic protein 1
	Micro-particle enzyme immunoassay
MMPs	Matrix metalloproteinases
MS	Metabolic syndrome
	Nonalcoholic fatty liver disease
NASH	Nonalcoholic steatohepatitis
NCEP ATP III	National Cholesterol Education Program Adult
	Treatment Panel III
NCP	Nitrocellulose paper
ND	Not detected
NIDDM	Non insulin dependent diabetes mellitus
	Non-lesional skin
	Negative predictive value
NS	Non significant
OGTT	Oral glucose tolerance test
OSA	Obstructive sleep apnea
Ox-LDL	Oxidized low density lipoprotein
PCOS	Polycystic ovarian syndrome
	Polymerase chain reaction
	Post-prandial blood glucose
	Positive predictive value
QC	
	Quantitative insulin sensitivity check index
	Retinoic acid receptor responder 2
ROC	Receiver operator characteristics

RT-PCR	. Reverse Transcriptase Polymerase Chain
	Reaction
RV	. Reaction vessel
S	. Significant
SBP	. Systolic blood pressure
SD	. Standard deviation
SDS-PAGE	. Sodium dodecyl sulfate-polyacrylamide gel
	electrophoresis
SLC16A	. Solute linked carrier 16A
SM	. Skeletal muscle
SPSS	. Statistical package for social sciences
SSC	. Skin squamous cell carcinoma
TC	. Total cholesterol
TG	. Triglycerides
Th-1	. T helper 1
TIG2	. Tazarotene induced gene 2
TN	. True negative
$TNF\text{-}\alpha\dots\dots$. Tumour necrosis factor-α
TP	. True positive
Type 1 DM	. Type 1 diabetes mellitus
Type 2 DM	. Type 2 diabetes mellitus
VLDL	. Very low density lipoprotein
WA	. White adipose tissue
	. Waist circumference
WHO	. World Health Organization

List of Tables

Table No.	Table Title	Page No.
1	Etiological classification of diabetes mellitus	7
2	Classification of diabetic complications	16
3	The ADA recommendation for diabetes diagnosis and other high risk categories	25
4	Diagnosis of GDM	26
5	Definitions of the metabolic syndrome	35
6	Ethnicity-specific values for waist circumference	37
7	Baseline characteristics of included subjects	116
8	Statistical difference between study groups concerning clinical parameters using Mann-Whitney's U-test	119
9	Statistical difference between study groups concerning laboratory parameters using Mann-Whitney's U-test	120
10	Statistical difference between study groups concerning clinical parameters using Kurskal Wallis test	121
11	Statistical difference between study groups concerning laboratory parameters using Kurskal Wallis test	122
12	Correlation analysis between serum chemerin level and other variables using Spearman's rank correlation coefficient in all patients' groups	124
13	Univariate analysis of measured parameters as predictors of metabolic syndrome	125

List of Figures

Figure No.	Figure Title	Page No.
1	The pathophysiology of the metabolic syndrome	39
2	Mechanism of insulin resistance	43
3	The pathophysiology of the metabolic syndrome and insulin resistance	50
4	Proinflammatory molecules and the metabolic syndrome	56
5	Pathophysiology of atherosclerosis in the metabolic syndrome	63
6	Structure of G-protein coupled receptor	74
7	The regulation of chemerin actions by active, pro-inflammatory chemerin and inhibitory chemerin-derived peptides	77
8	The role of chemerin and CMKLR1 in adipose tissue biology	78
9	Principle of sandwich Enzyme Linked Immunosorbant Assay	88
10	Polymerase chain reaction	91
11	Chemerin expression in healthy and diseased skin	93
12	Western blot method	96
13	Detection of chemerin in tissues using western blot technique	97
14	Chemerin ELISA standard curve	110
15	Box-Plot Chart showing difference between study groups concerning serum chemerin level	123
16	ROC curve for serum chemerin as a predictor of metabolic syndrome showing its best cutoff point	126

INTRODUCTION

Type 2 diabetes mellitus is a group of disorders characterized by hyperglycemia and associated with microvascular (i.e. retinal, renal, neuropathic) and macrovascular (i.e. coronary, peripheral vascular) complications. Hyperglycemia results from lack of endogenous insulin or resistance to the actions of insulin in muscle, fat and the liver. In addition to an inadequate response by the pancreatic beta cell (*Wolfs et al., 2009*).

Type 2 diabetes accounts for 90 to 95% of the incidence of diabetes. It is predicted that by the year 2025, 324 million people will be diabetic. The explosive increase in number of people diagnosed with diabetes makes this disease a real health threat in the 21st century. Understanding the etiology and finding a way to prevent type 2 diabetes is an urgent challenge for the health care of our society *(Cheng, 2005)*.

The metabolic syndrome is a cluster of coronary heart disease (CHD) risk factors including high blood pressure, dyslipidemia, hyperglycemia and central obesity that are associated with decreased ability of insulin to stimulate glucose disposal on peripheral target tissues, referred to as insulin resistance (*Reaven*, 2004).

Insulin resistance is determined by impaired sensitivity of insulin to its main target organs, i.e. adipose tissue, liver, and muscle. Obesity, particularly central obesity, is the prominent risk

factor for insulin resistance and results in type 2 diabetes and metabolic syndrome. More evidence has emerged that obesity is associated with inflammation that is causally involved in the development of insulin resistance (Zeyda et al., 2009).

Adipose tissue represents an active endocrine organ that releases a large number of bioactive mediators (adipokines) that signal to organs of metabolic importance including brain, liver, skeletal muscle, and the immune system thereby modulating hemostasis, blood pressure, lipid and glucose metabolism, inflammation and atherosclerosis. These adipokines include adiponectin, leptin, omentin, resistin, retinol binding protein 4, tumor necrosis factor- α , interleukin-6, vaspin, visfatin and chemerin (*Rabe et al.*, 2008).

Chemerin, also known as tazarotene induced gene 2 (TIG2) and retinoic acid receptor responder 2(RARRES2), is an adipokine that has been reported to modulate immune system function through its binding to the chemerin receptor (Roh et al., 2007).

Chemerin is secreted as an 18kDa inactive pro-protein and undergoes extracellular serine protease cleavage of the C-terminal portion of the protein to generate the 16kDa active chemerin which is present in plasma and serum (*Stejskal et al., 2008*). It is secreted by the mature adipocytes and expressed abundantly in adipose tissue in vivo. Furthermore, chemerin and its receptor/ChemR23 are expressed in mature adipocytes, suggesting

its function in autocrine/paracrine fashion (Takahashi et al., 2008).

It has been reported that chemerin serves as a chemoattractant for cells of the immune system such as macrophages and immature dendritic cells that express the cognate receptor chemokine-like receptor-1 (CMKLR1). Also chemerin acts as a positive regulator of adipocyte differentiation (Goralski et al., 2009).

Recent studies have shown that obesity induces inflammation in adipose tissue and since chemerin is a proinflammatory cytokine that recruits and activates immune cells, it may link obesity and inflammation. Therefore, a possible relation of chemerin to inflammatory proteins in obesity and type 2 diabetes is demonstrated (Weigert et al., 2009).

It has been demonstrated that chemerin is strongly associated with markers of inflammation and components of metabolic syndrome (*Lehrke et al.*, 2009).

Furthermore, chemerin is also related to insulin level, body fat deposition and lipid metabolism suggesting that it may play a role in the pathophysiology of obesity and metabolic syndrome (Wang et al., 2009).