THE ROLE OF DIFFUSION WEIGHTED MRI IN THE DIAGNOSIS AND FOLLOW UP OF BREAST CANCER

An essay submitted for partial fulfillment of Master degree in Radiodiagnosis

Presented by

Yasmin Hassan Moussa (M.B.,B.Ch)

Supervised by

Prof Dr. Hana Hamdy Nassef

Professor of Radiodiagnosis
Faculty of Medicine. Ain shams university

Dr.Amr Mahmoud Ahmed

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain shams University.

Faculty of Medicine, Ain shams University 2014

ACKNOWLEDGMENT

First and last, my profound gratitude should be submitted to the merciful ALLAH, whose help I always seek and without his willing I will achieve nothing.

I would like to express my deepest gratitude and thanks to **Prof Dr. Hana Hamdy Nasef** Professor of Radiodiagnosis, Faculty of medicine.

Ain shams University, for giving me the honour of being her candidate, working under her supervision, guided by her experience and precious advices and true concern.

Words could not express the feeling of gratitude and respect I carry to **Dr.Amr Mahmoud Ahmed** lecturer of radiodiagnosis, Faculty of Medicine, Ain shams University for his true concern, continuous advice, and encouragement which allowed completion of this work.

Last, but not least, I would like to express my deepest thanks to my family, my friends, my collegues and special thanks to my dear husband for his unlimited help and support.

DEDICATION

I DEDICATE THIS WORK TO: MY PARENTS MY SISTER MY DAUGHTER

CONTENTS

- 1. Introduction and aim of the work.
- 2. Anatomy and MRI anatomy of the breast.
- 3. Pathology of breast cancer.
- 4. Technique of MRI imaging of the breast and Physical principles of DWI.
- 5. Manifestations of DWI in breast cancer & in follow up patients with illustrative cases.
- 6. Summary and conclusion.
- 7. References
- 8. Arabic summary

LIST OF ABBREVIATIONS

ACC	Adenoid cystic carcinoma
ADC	Apparent Diffusion Coefficient
ALND	Axillary lymph node dissection
BIRADS	Breast imaging reporting and data system
DCE-MRI	Dynamic contrast enhanced- magnetic resonance imaging
DCIS	Ductal carcinoma Insitu
DWI	Diffusion Weighted Imaging
EPI	Echo planar imaging
FSE	Fast spin echo
HASTLE	Half acquisition single shot turbo spin echo sequence
HRT	Hormone replacement therapy
IBC	Inflammatory breast carcionoma
LIQ	Lower inner quadrant
LOQ	Lower outer quadrant
LVI	Lymphovascular invasion
MBC	Mucinous breast carcinoma
MIP	Maximum intensity projection
MPG	Motion probing gradient
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging

NACT	Neo adjuvant chemotherapy
NMLE	Non mass lesion enhancement
NOS	Not other wise specified
pCR	Pathological complete response
PROPELLER	Periodically rotated overlapping parallel lines with enhanced reconstruction
RECIST	Response evaluated criteria in solid tumors
RF	Radiofrequency
ROC	Receiver operating charchtaristics
ROI	Region of interest
SE	Spin Echo
SI	Signal intensity
SLNB	Sentinel lymph node biopsy
SNR	Signal noise ratio
SPIR	Spectral presaturation with inversion recovery
STIR	Short tau inversion recovery
TDLU	Terminal duct lobular unit
TE	Echo time
TR	Repition time
TSE	Turbo spin echo
UIQ	Upper inner quadrant
UOQ	Upper outer quadrant

LIST OF FIGURES

Fig.1: The extent of mammary ridge	4
Fig.2: Quadrant and clock divisions of the breast	5
Fig.3: Anatomy of the breast	7
Fig.4: Terminal duct lobular unit	9
Fig.5: Anatomy of the axilla	11
Fig.6: Blood supply of the breast	13
Fig.7: Lymphatic drainage of the breast	14
Fig.8: Levels of lymph nodes within the axilla	15
Fig.9: Innervation of the breast	16
Fig.10: Invasive ductual carcinoma in a breast with dense parer	ichyma.18
Fig.11: MRI anatomy of the breast	19
Fig.12: Saggital T1-weighted image without fat saturation	20
Fig.13: Saggital T1-weighted image with fat saturation	21
Fig.14 Saggital T2-weighted image with fat saturation	21
Fig.15: Breast nodules	22
Fig.16: Nipple enhancement	23
Fig.17: Sebaceous cyst	23
Fig.18: Normal anatomy of pectoralis major muscle	25
Fig.19: Pectoralis major tendon	25
Fig.20: Lateral thoracic artery	26
Fig.21: Internal mammary artery	26
Fig.22: Perforating branches of the breast	27

Fig.23: Maximum intensity projection	27
Fig.24: Benign lymph node with vessel radiating to hilum	27
Fig.25 : Intial study in the fourth week of the menstrual cycle in a premenopausal woman.	.28
Fig.26: Diffuse stippled enhancement in a dense breast in a premenopausal patient.	29
Fig.27: MRI examination of a lactating woman	.30
Fig.28: Comparison between the 8channel &16-channel standard coil.	50
Fig.29: Typical breast coil	.52
Fig.30: MRI examination "couch"	.52
Fig.31: Kinetic phases of DCE: intial peak and delayed phase	.56
Fig.32: Breast carcinoma with perifocal oedema	.58
Fig.33: Mass enhancing lesion with speculated margins	60
Fig.34: Maximum intensity projection	.61
Fig.35: Mass enhancing lesion with rim enhancement	.62
Fig.36: :Invasive ductual carcinoma	.64
Fig.37: Free and restricted diffusion of water in different tissues	.66
Fig.38: Ductual carcinoma in situ (DCIS)	.68
Fig.39: ADC values of malignant and benign lesions	70
Fig.40: Graph illustrates the pulse sequence of single-shot spin-echo echoplanar diffusion-weighted imaging	.71
Fig.41: Influence of contrast agent on ADC values	73
Fig.42: Graph illustrates the logarithm of relative signal intensity (SI) versus b value for tumor and normal tissue	74
Fig.43: A mass leison with rim enhancement	.80
Fig.44:A non mass like enhancement lesion with segmental distribution	n81

Fig.45:Ductual carcinoma Insitu	3
Fig.46: : Ductual carcinoma Insitu84	
Fig.47: DCIS in the left breast85	
Fig.48: DCIS and fibrocystic disease86	
Fig.49 : IDC with central carcinoma87	7
Fig.50: Invasive ductual carcinoma89)
Fig.51: : Invasive ductual carcinoma, grade III90)
Fig.52: : Invasive ductual carcinoma	1
Fig.53: : Invasive ductual carcinoma92	2
Fig.54: Invasive ductual carcinoma93	3
Fig.55: Invasive lobular carcinoma94	4
Fig.56: Invasive lobular carcinoma95	5
Fig.57: Mucinous carcinoma9	7
Fig.58 : Mucinous carcinoma98	3
Fig.59: Mucinous carcinoma	9
Fig.60: The relationship between change in cellular density following an	
effective therapy and the corresponding distribution of water diffusion	
values within the tumor	2.
Fig.61: : Variation in tumor apparent diffusion coefficient (ADC) with	
treatment	3
Fig.62: DW-MRI in patient receiving NAC	5
Fig.63 : DW-MRI in patient receiving NAC	,
Fig.64: DW-MRI in patient receiving NAC	3
Fig.65: DW-MRI in patient receiving NAC)

Fig.66: DW-MRI in patient receiving NAC110
Fig.67: DW-MRI in patient receiving NAC
Fig.68: DW-MRI in patient receiving NAC
Fig.69: Axial MRI after surgery of breast carcinoma to rule out local recurrence
Fig.70: Axial MRI for enlarged axillary lymph node in a woman with IDC
Fig.71: Axial MRI for enlarged axillary lymph node containing metastatic disease in a breast cancer patient with saline implant118
Fig.72 :Invasive ductual carcinoma with axillary lymph node119
Fig.73 :Invasive ductual carcinoma with axillary lymph node120

INTRODUCTION

Breast cancer is among the most common diseases affecting women worldwide, carrying a high mortality rate. Early detection and treatment may increase survival and improve quality of life which is why diagnostic accuracy is critical (*Nogueira et al.*, 2014).

Among all the existing pre surgical imaging modalities for breast cancer, Magnetic resonance imaging (MRI) is considered to be more accurate than ultrasound and mammography and can discriminate between benign and malignant masses (*Jiang et al., 2014*) especially in women with dense breast parenchyma where mammography has week role in it(*Gareth et al., 2014*).

Contrast enhanced MRI study of the breast is based on the enhancement pattern of the lesions and morphologic changes (*Petralia et al.*, *2011*). With these two criteria breast MRI has a sensitivity of about 85-99% in detecting malignant breast lesions, however there is an overlap of these criteria with benign lesions which leads to a reported specificity of about 40 to 80% (*Cai et al.*, *2014*).

Nowadays, there are an increasing number of published studies which mention that the specificity of the breast MRI could be increased by using diffusion weighted imaging (DWI) moreover it can be useful for detection, assessment and treatment response monitoring of breast cancer (*Janka et al.*, 2014).

DWI is a technique that provides information about the functional environment of water in tissues. It relies on the detection of the random microscopic motion of free water molecules known as Brownian movment. It detects changes that include shift of water from extracellular

to intracellular spaces, restriction of cellular membrane permeability, increased cellular density and disruption of cellular membrane permeability (*cakir et al.*, 2013).

Diffusion rates vary between normal and pathologic tissue. The value of diffusion of water in tissues is called apparent diffusion coefficient (ADC) and it is calculated in the MRI machine by using ADC mapping. The studies showed that the ADC values vary between malignant and benign breast masses So application of DW sequence to the breast MRI will improve the specificity of the MRI without the need for intravenous contrast material injection (*Tan et al.*, 2014).

Also this sequence plays an important role in early assessment of tumor response to therapy, assessment of residual tumor after the end of therapy and in diagnosis of recurrence (*Hahn et al.*, 2014).

It is found that there is a correlation between ADC values and different prognostic factors of breast cancer as estrogen and progesterone receptors and microvascular density of breast cancer (*choi et al.*, 2012).

In breast cancer with brain and bone metastasis DWI is used to monitor tumor vascular permeability and cellularity where in brain metastasis there is increase in ADC values unlike bone metastasis that shows decrease in ADC values (*Budde et al.*, 2012).

AIM OF WORK

To review the role of diffusion weighted MRI in increasing the specificity of the MRI of the breast in detection of cancer breast and in follow up of the treatment.

Introduction &Aim of work

Introduction &Aim of work

Introduction &Aim of work