

Ain Shams University Faculty of Science

EXTRACTTION OF URANIUM AND COPPER FROM CALCAREOUS SHALE, UM BOGMA FORMATION, G. ALLOUGA, SOUTH WESTERN, SINAI-EYGPT.

A Ph.D. Thesis Submitted

To

Chemistry Department Faculty of Science Ain Shams University

By

Soaad Mohamed Sabry Ahmed Elashry

M. Sc. (**Inorganic Chemistry**) Nuclear Materials Authority

Ain Shams University Faculty of Science

EXTRACTTION OF URANIUM AND COPPER FROM CALCAREOUS SHALE, UM BOGMA FORMATION, G. ALLOUGA, SOUTH WESTERN, SINAI-EYGPT.

Ph.D. Thesis Submitted

By

Soaad Mohamed Sabry Ahmed Elashry M. Sc. (Inorganic Chemistry)

To

Chemistry Department Faculty of Science-Ain Shams University

For the requirements

Degree of Doctor of Philosophy (Ph.D.) in Science (Chemistry)

Under Supervision of

Prof. Dr. Mohamed M. Abo-Aly

Prof. of Inorganic Chemistry Faculty of Science, Ain Shams University Prof. Dr. Sofia Yahia Afifi

Prof. of Geochemistry
Vice Chairman of Nuclear Materials
Authority

ACKNOWLEDGEMENT

Thanks God for your blessing and help during this study

I would like to thank and appreciate **Prof. Dr. Mohamed Mahmoud Abo -Aly**, Professor of inorganic Chemistry, Faculty of Science, Ain Shams University for his supervision, guidance and continuous encouragement and critical review for the present work.

My deep thanks and gratitude to **Prof. Dr. Sofia Yahia Afifi Mohamed,** Prof. of Geochemistry, the vice chairman of Nuclear Materials Authority (NMA) for suggesting the point of research, her direct supervision and guidance, fruitful scientific discussion, valuable advises, help offering during the progress of the study, reading, her insight on both the professional and personal levels which gave me the greatest helps to accomplish this study

My thanks and gratitude is also due to **Dr. Mohamed Mohamed Goda**, lecturer of Geochemistry, NMA for his help, encouragement and fruitful discussion.

Thanks are also for **prof. Dr. Ibrahim E. Elassy**, Prof. of field geology and former vice chairman of Nuclear Materials Authority (NMA) for his interesting discussion and continuous interest.

I am deeply indebted to all my colleagues and staff members of Major Chemical Analysis Lab. (Inshas), Nuclear Materials Authority for their help and encouragement.

I express my deep thanks to my family for the continuous encouragement during all stages of this work.

Soaad M. El-Ashry

Abbreviations used

ADU Ammonium diuranate

AMP Ammonium molybdophosphate

BSE Back scatter electronic

Cuprizone Oxalic acid bis(cyclohexylidene hydrazide)

DEHPA Diethylhexyl-phosphoric acid

Ea Activation energy

EDTA Ethylene di amine tetra acetic acid

EDX Energy dispersive X-ray

ESEM Environmental scanning electron microscope

g/L Gram per litre

HCHO Formaldehyde

hr Hour

IAEA International Atomic Energy Agency

ICP-AES Inductively coupled plasma mass spectrometer

ICP-OES Inductively coupled plasma optical emission spectrometer

IRA-400 Amberlit IRA-400 resin

ISL Insitu leaching

K_d Distribution constant

L.O.I Loss on ignition

LIX984N 2- hydroxy-5-nonylacetophenone oxime

NMA Nuclear Materials Authority

ppm Part per million

R Universal gas constant, 8.314 Jmol⁻¹ K⁻¹

REEs Rare earth elements

RIa-mag Glycidyl methacrylate chelating resin

rpm Round per minute

List of Abbreviations

S/L Solid- liquid ratio

T Reaction temperature, K^o

TBP Tributyl phosphate

TPPO Triphenyl phosphine oxide

w.s.r Wet settled resin

XRD X-ray diffraction

XRF X-ray fluorescence

ΔH Enthalpy change

ΔS Entropy change

CONTENTS

Abbreviations List of Tables List of Figures Abstract		Page VI VIII IX XII
	CHAPTER –I INTRODUCTION AND LITERATURE SURVEY	
1.1.	General outlook and aim of work	1
1.2.	Some aspects of the elements under study	3
1.2.1	Uranium	3
1.2.1.1.	Chemistry of uranium	4
1.2.1.2.	Uses of uranium	5
1.2.2	Copper	5
1.2.2.1.	Chemistry of copper	6
1.2.2.2.	Uses of copper	6
1.3.	Uranium and copper ore processing technologies	7
1.3.1.	Ore preliminary concentration and treatment	7
1.3.2.	Pre - concentration operations	8
1.3.2.1.	Floatation	8
1.3.2.2.	Roasting	9
1.4.	Extractive hydrometallurgy of uranium and copper	
1.1.	rocks	9
1.4.1.	Uranium - copper leaching	9
1.4.1.1	Conventional techniques	9
1.4.1.1.1	Atmospheric agitation leaching	9
1.4.1.1.2	Pressure leaching	10
1.4.1.1.3	Strong acid pugging and curing	10
1.4.1.1.4	Percolation leaching	10
1.4.1.2	Non-conventional techniques	11
1.4.1.2.1	In-Situ leaching	11
1.4.1.2.2	Bacterial leaching	11
1.4.1.2.3	Heap leaching	13
1.5.	Leaching reagents for leaching uranium and copper	
	from their rocks	13
1.5.1.	Acidic leaching	13
1.5.2.	Alkaline leaching	15

	CO	NTENTS
1.6.	Separation methods of uranium and copper	17
1.6.1.	Precipitation method	17
1.6.2.	Co-precipitation	18
1.6.3.	Solvent extraction	18
1.6.4.	Ion exchange	21
1.6.4.1.	Chemistry of ion exchange process	22
1.6.4.1.1.	Sorption reactions	23
1.6.4.1.2.	Elution reaction	23
1.7.	Concentrated uranium production	24
1.8.	Literature review	26
	CHAPTER II	
	EXPERIMENTAL WORK	
2.1.	Materials	37
2.1.1.	Chemicals and reagent	37
2.1.2.	Lewatit mono plus M-500 Resin for uranium	37
2.1.2.	separation.	31
2.1.2.1.	Characterization of Lewatit Resin	37
2.1.2.2.	Properties of Lewatit Resin	39
2.1.3.	LIX-984N Extractant for copper separation.	39
2.1.3.1.	LIX-984N characterization	39
2.1.3.2.	Main advantages of LIX-984N	39
2.2.	Instrumentation and equipment.	40
2.2.1.	General	40
2.2.2.	pH measurement	41
2.2.3.	U.V. Visible spectrophotometeric measurements.	41
2.2.4.	Flame photometer	41
2.2.5.	X-ray diffraction	42
2.2.6.	X-ray fluorescence.	42
2.2.7.	Environmental Scanning Electron Microscope	42
2.2.8.	Atomic absorption spectrometer	42
2.2.9.	Inductively Coupled Plasma-Optical Emission	
	Spectrometer	43
2.3.	Material preparations	43
2.3.1.	Preparation of uranium stock synthetic solution	43
2.4.	Analytical methods	43
2.4.1.	Chemical analysis of major oxides	43
2.4.2.	Trace elements determination.	44
2.4.3.	Control chemical analysis of uranium	44
2.4.3.1.	Spectrophotometric technique	44
2.4.3.2.	Oxidometric titration	45
2.4.4.	Control chemical analysis of copper	45

	CO	ONTENTS
2.4.4.1.	Spectrophotometric technique	45
2.4.5.	Determination of thorium using Arsenazo III	
	reagent	47
2.4.6.	Determination of total rare earth elements	47
2.5.	Leaching process	48
2.6.	Recovery studies for both uranium and copper	50
2.6.1.	Sorption of uranium using column technique by	
	Lewatit mono Plus M500 resin (Solid - liquid	
	extraction).	50
2.6.2.	Uranium elution from the loaded anion exchange	
	resin	51
2.7.	Precipitation of uranium concentrate	51
2.8.	Extraction of copper	51
2.8.1.	Extraction of copper from carbonate leach liquor	51
2.8.2.	Extraction of copper using LIX 984N from sulfate	7 1
2021	leach liquor (Liquid- liquid extraction).	51
2.8.2.1.	Extraction process	52 53
2.8.2.2.	Stripping process Procinitation of compar from strip Solution	53 54
2.9.	Precipitation of copper from strip Solution	34
	CHAPTER III	
	RESULTS AND DISCUSSION	
3.1.	Chemical characterization of the study calcareous	
5.1.	shale	55
3.2.	Mineralogical characteristics of the studied sample	57
3.3.	Leaching processes	62
3.3.1.	Alkaline leaching of uranium and copper from	02
0.0.1	calcareous shale sample	63
3.3.1.1.	Chemistry of carbonate leaching process	63
3.3.1.2.	Batch Leaching	64
3.3.1.2.1.	Effect of different alkaline reagents	65
3.3.1.2.2.	Effect of the ammonium carbonate concentration	66
3.3.1.2.3.	Effect of the ammonium bicarbonate concentration	67
3.3.1.2.4.	Effect of calcareous shale grain size.	69
3.3.1.2.5.	Effect of solid/liquid ratio (S/L)	70
3.3.1.2.6.	Effect of oxidant addition	70
3.3.1.2.7.	Effect of agitation time	72
3.3.1.2.8.	Effect of temperature	73
3.3.1.3.	Preparation of alkaline leach liquor	74
3.3.2.	Acidic leaching of uranium and copper	75

		CONTENTS
3.3.2. 1.	Chemistry of uranium leaching using H ₂ SO ₄	76
3.3.2.2.	Batch Leaching	77
3.3.2.2.1.	Effect of grain size on leaching efficiency of coppe	r
	and uranium	77
3.3.2.2.2.	Effect of sulfuric acid concentration on leaching	
	efficiency of copper and uranium	78
3.3.2.2.3.	Effect of solid / liquid ratio on the leaching	
	efficiency of uranium and copper	79
3.3.2.2.4.	Effect of contact time on the leaching efficiency of	
	uranium and copper	81
3.3.2.2.5.	Effect of temperature on the leaching efficiency of	82
	uranium and copper	
3.3.3.3.	Preparation of acidic leach liquor	83
3.4.	Recovery of uranium and copper from alkaline	
	leach liquor	85
3.4.1.	Recovery of uranium from carbonate leach liquor	85
3.4.1.1.	Sorption of uranium	86
3.4.1.1.1	Effect of pH on uranium recovery from carbonate	
	media	86
3.4.1.1.2.	Uranium loading	87
3.4.1.1.3.	Uranium elution profile	88
3.4.1.2.	Preparation and qualification of the final uranium	
	concentrate from carbonate media	89
3.4.2.	Recovery of copper from carbonate leach liquor	90
3.5.	Recovery of uranium and copper from acidic leach	
	liquor.	91
3.5.1.	Recovery of uranium from acidic leach liquor	91
3.5.1.1.	Effect of pH on uranium extraction from sulfate	
	media	91
3.5.1.2.	Sorption of uranium	92
3.5.1.2.1.	Uranium loading	92
3.5.1.2.2.	Uranium elution profile	94
3.5.1.2.	Preparation and qualification of the final uranium	
	concentrate from sulfate media	94
3.5.1.3.	Purification of the uranium concentrate produced	
	from acidic media	95
3.5.2.	Recovery of copper from sulfate leach liquor	
	(Liquid- liquid extraction).	96
3.5.2.1.	Factors affecting the extraction of copper	97
3.6.2.1.1.	Effect of different diluents	97
3.6.2.1.2.	Effect of equilibrium pH on Cu extraction	99
3.6.2.1.3.	Effect of LIX-984N concentration	100

	CONTENTS
Effect of shaking time.	101
_	101
Effect of aqueous to organic (A/O) phase ratio	104
Copper stripping	105
Factors affect the stripping of copper	105
Effect of H ₂ SO ₄ acid concentration on copper	
stripping	105
Effect of contact time on copper stripping	106
Effect of organic /aqueous (O/A) phase ratio	107
Preparation and quantification of the copper	
concentrate product	108
Proposed flow sheets for alkaline and acidic	
recovery of uranium and copper from calcareous	
shale sample, Um Bogma formation, G. Allouga,	
South western, Sinai, Egypt.	109
-	
	110
± •	
copper using acidic leaching.	112
ND CONCLUCION	114
SUMMARY AND CONCLUSION	
REFERENCES ARABEC SUMMARY	
	Factors affect the stripping of copper Effect of H ₂ SO ₄ acid concentration on copper stripping Effect of contact time on copper stripping Effect of organic /aqueous (O/A) phase ratio Preparation and quantification of the copper concentrate product Proposed flow sheets for alkaline and acidic recovery of uranium and copper from calcareous shale sample, Um Bogma formation, G. Allouga, South western, Sinai, Egypt. Proposed flow sheet for recovery of uranium and copper using alkaline leaching. Proposed flow sheet for recovery of uranium and copper using acidic leaching.

LIST OF TABLES

Table (1)	The Chemicals and reagents	38
Table (2)	The studied factors affect the agitation leaching of the calcareous shale sample.	49
Table (2)	•	47
Table (3)	Chemical analysis of average major oxides in (Wt %),	
	calcareous shale samples, Um Bogma Formation,	~ ~
T. 11 (4)	Gabel Allouga, Sinai, Egypt.	56
Table (4)	Average concentration of U, Th, and \sum REEs (ppm),	
	of calcareous shale sample, Um Bogma Formation,	
	Gabel Allouga, Sinai, Egypt.	57
Table (5)	X-ray diffraction data of studied calcareous shale	
	minerals, Um Bogma formation, G. Allouga, south	
	western, Sinai, Egypt.	61
Table (6)	Leaching of Cu and U from calcareous shale by	
	different alkaline mixture.	65
Table (7)	Chemical analysis of prepared leach liquor using	
	alkaline leaching of calcareous shale sample.	75
Table (8)	Chemical analysis of prepared sulfate leach liquor	
. ,	using acidic leaching of calcareous shale sample.	84
Table (9)	Comparison between factors controlling alkaline and	
()	acidic leaching processes on calcareous shale, Um	
	Bogma formation, G. Allouga, South western, Sinai,	
	Egypt	85
Table (10)	Affect the dielectric constant of the diluent on copper	
	extraction efficiency from sulfate leach liquor.	98
Table (11)	Thermodynamic parameters of copper extraction from	, 0
14610 (11)	sulfate leach liquor using LIX 984N as extractant.	103
Table (12)	Effect of A/O phase ratio on copper extraction by	105
1 abic (12)	4% LIX 983N in kerosene	104
Table (13)	Effect of O/A phase ratio on copper stripping from	
1 abic (10)	loaded 4% LIX 984N in kerosene by 3M H ₂ SO ₄ with	
	shaking time 4min	108
	shaking time.	100

LIST OF FIGURES

Fig. (1)	Geologic map of the studied area	2
Fig. (2)	Leaching methods and techniques	12
Fig. (3)	Generalized processes for production of uranium	
O , ,	concentrate	25
Fig. (4)	Structure of anionic resin	39
Fig. (5)	Reaction between LIX984N and copper	40
Fig. (6)	The standard curve for uranium spectrophotometric	
U ()	determination at 655nm by Metertch Single Beam	
	spectrophotometer at 25°C	45
Fig. (7)	Calibration curve of copper using cuprizone reagent	47
Fig. (8)	EDX and BSE image showing uranophane adsorbed on	58
	ilmenite	
Fig. (9)	EDX and BSE image showing calcopyrite mineral	58
Fig. (10)	EDX and BSE image showing copper oxide mineral	59
Fig. (11)	EDX and BSE image showing pyrite mineral	59
Fig. (12)	EDX and BSE image showing gypsum mineral	59
Fig. (13)	EDX and BSE image showing HREEs- bearing mineral	60
Fig. (14)	X-ray diffraction pattern of studied calcareous shale	
	minerals, Um Bogma formation, G. Allouga, south western,	
	Sinai, Egypt.	60
Fig. (16)	Effect of (NH ₄) ₂ CO ₃ concentration on U and Cu leaching	
	efficiencies, from calcareous shale, Um Bogma formation,	
	G. Allouga, Sinai, Egypt.	67
Fig. (17)	Effect of (NH ₄)HCO ₃ concentration on U and Cu leaching	
	efficiencies, from calcareous shale, Um Bogma formation,	
71 (10)	G. Allouga, Sinai, Egypt.	68
Fig. (18)	Effect of grain size on U and Cu leaching efficiencies, from	
	calcareous shale sample, Um Bogma formation,	
F: (10)	G. Allouga, South western, Sinai, Egypt.	69
Fig. (19)	Effect of solid/liquid ratio on U and Cu leaching	
	efficiencies, from calcareous shale sample, Um Bogma	70
E:- (20)	formation, G. Allouga, South western, Sinai, Egypt.	70
Fig. (20)	Effect of oxidant H ₂ O ₂ on U and Cu leaching efficiencies,	
	from calcareous shale sample, Um Bogma formation,	70
Fig. (21)	G. Allouga, South western, Sinai, Egypt.	70
Fig. (21)	Effect of leaching time on U and Cu leaching efficiencies,	
	from calcareous shale sample, Um Bogma formation, G. Allouga, South western, Sinai, Egypt.	72
Fig. (22)	Effect of leaching temperature on U and Cu leaching	12
Fig. (22)	efficiencies from calcareous shale sample Um Bogma	
	circleneres from careareous share sample of Dogina	

Fig. (23)	formation, G. Allouga, South western, Sinai, Egypt. Effect of Effect of grain size on U and Cu leaching	73
	efficiencies, from calcareous shale sample, Um Bogma	
	formation, G. Allouga, South western, Sinai, Egypt.	78
Fig. (24)	Effect of sulfuric acid concentrations on and Cu leaching	
	efficiencies calcareous shale sample, Um Bogma formation,	
	G. Allouga, South western, Sinai, Egypt.	79
Fig. (25)	Effect of Solid /Liquid phase ratio on uranium and copper	
	leaching efficiencies, calcareous shale sample, Um Bogma	
	formation, G. Allouga, South western, Sinai, Egypt.	80
Fig. (26)	Effect of agitation time on uranium and copper leaching	
8 ()	efficiencies, calcareous shale sample, Um Bogma formation,	0.1
	G. Allouga, South western, Sinai, Egypt.	81
Fig. (27)	Effect of leaching temperature on uranium and copper	
0 ()	leaching efficiencies, calcareous shale sample, Um Bogma	
	formation, G. Allouga, South western, Sinai, Egypt.	82
Fig. (28)	Effect of pH on uranium adsorption using Lewatit Mono	
	Plus M500 resin from carbonate leach solution.	87
Fig. (29)	Adsorption curve for uranium extraction from carbonate	
	leach liquor of calcareous shale using Lewatit Mono Plus	
	M500 (each aliquot sample vol. =150 mL).	88
Fig. (30)	Elution bell curve for uranium from loaded Lewatit Mono	
	plus M500 anion exchange resin.	89
Fig. (31)	X-ray fluorescence qualitative analysis of the prepared	90
	sodium diuranate.	
Fig. (32)	X-ray fluorescence analysis of the prepared copper oxide.	91
Fig. (33)	Effect of pH on extraction of uranium using Lewatit	
(- 1)	MonoPlus M500 resin from sulfate solution.	92
Fig. (34)	Adsorption curve for uranium extraction from suphate	
	leach solution of calcareous shale using Lewatit Mono Plus	02
E: (25)	M500 (each aliquot sample vol.=100 mL).	93
Fig. (35)	Elution bell curve for uranium from loaded Lewatit Mono	04
Eig (26)	plus M500 anion exchange resin.	94
Fig. (36)	X-ray diffraction analysis of the prepared uranium oxide UO ₃ .	95
Fig. (27)	· ·	93
Fig. (37)	X-ray fluorescence analysis of the prepared uranium oxide UO ₃ .	96
Fig. (38)	Effect of different diluents on copper extraction.	98
Fig. (39)	Effect of pH on copper extraction efficiency.	99
Fig. (40)	Effect of LIX-984N conc, on copper extraction efficiency.	100
Fig. (41)	Effect of shaking time on copper extraction efficiency.	101
Fig. (42)	Effect of temperature on copper extraction efficiency.	102
Fig. (43)		103

Fig. (44)	Effect of H ₂ SO ₄ acid concentration on copper stripping	
	efficiency.	106
Fig. (45)	Effect of shaking time on copper stripping efficiency.	107
Fig. (46)	XRD diffraction data of copper sulfate product.	108
Fig. (47)	X-ray fluorescence analysis of the prepared copper oxide	109
Fig. (48)	Proposed flow sheet for alkaline recovery of uranium and	
	copper from calcareous shale, Um Bogma formation,	
	G. Allouga, Southwestern, Sinai, Egypt.	111
Fig. (49)	Proposed flow sheet for acidic recovery of uranium and	
O . ,	copper from calcareous shale, Um Bogma formation,	
	G. Allouga, Southwestern, Sinai, Egypt.	113