

جامعة عين شمس كلية العلوم قسم الميكروبيولوجي

رسالة ماجستير

اسم الطالبة: غادة محمد عبد الرحيم محمد إسماعيل

عنوان الرسالة: دراسات فسيولوجية وجزيئية لعدوي بكتريا سيدوموناس إيرجينوزا

بسبب تلوث مياه الصنبور

الدرجة العلمية: ماجستيرفي العلوم - في الميكروبيولوجي

لجنة الإشراف أ. د. محمد سيد سلامة

أستاذ البيولوجيا الجزيئية - قسم علم الحشرات كلية العلوم - جامعة عين شمس

د . هالة محمد أبو شادى

أستاذ مساعد الميكروبيولوجي - قسم الميكروبيولوجي كلية العلوم - جامعة عين شمس

أ. د. محمد محمد بكرى أحمد الجمل

مستشار الميكر وبيولوجي بالمجمع الطبي العسكري بالمعادي

موافقة مجلس الجامعة

2010 /

الدر اسات العليا:

تاريخ المنح: 28 / 7 / 2010

ختم الإجازة

أجيزت الرسالة بتاريخ: 2010 /

مو افقة مجلس الكلية

2010 /

جامعة عين شمس

كلية الْعَلوم

دراسات فسيولوجية وجزيئية لعدوي بكتريا سيدوموناس إيرجينوزا بسبب تلوث مياه الصنبور

غادة محمد عبد الرحيم محمد إسماعيل اســـم الطالبة:

> الدرجة العلمية: ماجستير في العلوم – في

> > الميكروبيولوجي

القسم التابع له: الميكر وبيولوجي

الجامعة: جامعة عين شمس

ســـنة التخرج: 1999

ســـنة المـــنح: 2010

جامعة عين شمس كلية العلوم

شــکر

أتقدم بخالص شكري وتقديري إلي السادة المشرفين على الرسالة وهم:

أ. د. محمد سيد سلامة أستاذ البيولوجيا الجزيئية- قسم علم الحشرات كلية العلوم - جامعة عين شمس

د . هالة محمد أبو شادي أستاذ مساعد الميكروبيولوجي - قسم الميكروبيولوجي كُلية العلوم - جامعة عين شمس

أ. د. محمد محمد بكرى أحمد الجمل

مستشار الميكروبيولوجي بالمجمع الطبي العسكري بالمعادي

كما أتقدم بشكري للجهات والمستشفيات التي تعاونت معي وهي : - مستشفي الحلمية العسكري

- مستشفى القصر العينى

جامعة عين شمس كلية العلوم قسم الميكروبيولوجي

در اسات فسيولوجية وجزيئية لعدوي بكتريا سيدوموناس إيرجينوزا بسبب تلوث مياه الصنبور

رسالة للحصول على درجة الماجستير في العلوم (الميكروبيولوجي)

مقدمة من غادة محمد عبد الرحيم محمد بكالوريوس العلوم (ميكروبيولوجي / كيمباء – 1999) كلية العلوم- جامعة عين شمس

تحت اشراف أ . د . محمد سيد سلامة أستاذ البيولوجيا الجزيئية- قسم علم الحشرات كلية العلوم – جامعة عين شمس د . هالة محمد أبو شادي أستاذ مساعد الميكروبيولوجي – قسم الميكروبيولوجي كلية العلوم – جامعة عين شمس أ . د . محمد محمد بكري أحمد الجمل مستشار الميكروبيولوجي بالمجمع الطبي العسكري بالمعادي

> كلية العلوم - جامعة عين شمس 2010

الا (وقل رب زدني

علما)

Abstract

Ghada Mohamed Abd Elreheem

Physiological and molecular studying of *Pseudomonas* aeruginosa infection caused by tap water contamination

The objectives of the present investigation were:

Studying the association between *Pseudomonas aeruginosa* infection and faucet contamination in burn unit in El Helmaya military hospital and El Kasr el einy hospital.

These objectives were achieved by isolation and identification of some pathogenic bacteria of *Pseudomonas aeruginosa*. Also, studying the relationship between the presence of *Pseudomonas aeruginosa* isolates in patients and in tap water outlets.

The results of the present investigation showed that: water as a source of contamination plays a significant role in *Pseudomonas aeruginosa* infection.

(وقىل رب زدني علما

List of Tables

Tables	Pages
Table (1) a: outbreak of antibiotic-resistant <i>Pseudomonas aeruginosa</i> linked to contaminated environmental surfaces in the healthcare setting.	6
Table (1)b: outbreak of antibiotic-resistant <i>Pseudomonas aeruginosa</i> linked to contaminated environmental surfaces in the healthcare setting	9
Table (2): showing the number of cases in each group of patient isolate and water isolate.	48
Table (3): showing the number of male cases and female cases.	49
Table (4): showing the molecular weight of each bands and the number of bands in each isolate of <i>Pseudomonas aeruginosa</i> .	58
Table (5): Gel documentation analysis of band % and molecular weight of protein pattern of <i>Pseudomonas aeruginosa</i> isolates No.6, 7, 13, 24, 29, 34, 35, 39, 42, 45, 48 and 50 respectively	59

LIST OF FIGURES

Figure	page
Figure (1): showing the number of cases in group I and group II.	49
Figure (2): showing the number of male cases and female cases.	50
Figure (3): Agarose gel electrophoresis (1.5 %) of specific PCR product (504 bp) resulted from amplification of genomic DNA of <i>Pseudomonas aeruginosa</i> using PAL1 and PAL2 primers flanking <i>Oprl</i> gene. Lane M represent 100 bp ladder markers. Lane 1 represent Positive control, Lane 2 represent Negative control, and Lanes from 3 to 7 represent isolates No. 1 to 5 respectively.	51
Figure (4): Agarose gel electrophoresis (1.5%) of specific PCR product (504 bp) resulted from amplification of genomic DNA of <i>Pseudomonas aeruginosa</i> using PAL1 and PAL2 primers flanking <i>Oprl</i> gene. Lane M represent 100 bp ladder markers. Lanes from 1 to 7 represent isolates No.6 to 12 respectively.	51
Figure (5): Agarose gel electrophoresis (1.5 %) of specific PCR product (504 bp) resulted from amplification of genomic DNA of <i>Pseudomonas aeruginosa</i> using PAL1 and PAL2 primers flanking <i>Oprl</i> gene. Lane M represent 100 bp ladder markers. Lanes from 1 to 7 represent isolates No.13 to 19 respectively.	52

Figure (6): Agarose gel electrophoresis (1.5 %) of specific PCR product (504 bp) resulted from amplification of genomic DNA of <i>Pseudomonas aeruginosa</i> using PAL1 and PAL2 primers flanking <i>Oprl</i> gene. Lane M represent 100 bp ladder marker and Lanes from 1 to 7 represent isolates No. 20 to 26 respectively.	52
Figure (7): Agarose gel electrophoresis (1.5 %) of specific PCR product (504 bp) resulted from amplification of genomic DNA of <i>Pseudomonas aeruginosa</i> using PAL1 and PAL2 primers flanking <i>Oprl</i> gene. Lane M represent 100 bp ladder marker and Lanes from 1 to 7 represent isolates No. 27 to 33 respectively.	53
Figure (8): Agarose gel electrophoresis (1.5 %) of specific PCR product (504 bp) resulted from amplification of genomic DNA of <i>Pseudomonas aeruginosa</i> using PAL1 and PAL2 primers flanking <i>Oprl</i> gene. Lane M represent 100 bp ladder marker and Lanes from 1 to 7 represent isolates No. 34 to 40 respectivily.	53
FIGURE (9): Agarose gel electrophoresis (1.5 %) of specific PCR product (504 bp) resulted from amplification of genomic DNA of <i>Pseudomonas aeruginosa</i> using PAL1 and PAL2 primers flanking <i>Oprl</i> gene. Lane M represent 100 bp ladder marker and Lanes from 1 to 6 represent isolates No. 41 to 46 respectivily.	54
Figure (10): Agarose gel electrophoresis (1.5 %) of specific PCR product (504 bp) resulted from amplification of genomic DNA of <i>Pseudomonas aeruginosa</i> using PAL1 and PAL2 primers flanking <i>Oprl</i> gene. Lane M represent 100 bp ladder marker and Lanes from 1 to 6 represent isolates No. 47 to 52 respectivily.	54

Figure (11): Plasmid are present in isolates no. 2, 3, 4, 5, 7, 11, 15 and 16 which represent samples 15, 29, 38, 5, 7, 17, 43 and 39.	55
Figure (12): Plasmid profiles of <i>Pseudomonas aeruginosa</i> isolated from burn patients at two hospitals of Tehran (IRAN).	56
Figure (13): Electrophoretic separation of protein patterns of <i>Pseudomonas aeruginosa</i> isolates. Lane M represents protein marker and lanes from 1 to 12 represent isolates No. 6, 7, 13, 24, 29, 34, 35, 39, 42, 43, 48 and 50 respectively.	57
Figure (14): Densitometric scanning of protein patterns of molecular weight marker.	60
FIGURE (15): Densitometric scanning of protein patterns of <i>Pseudomonas aeruginosa</i> isolates No. 6, 7 and 13.	61
FIGURE (16): Densitometric scanning of protein patterns of <i>Pseudomonas aeruginosa</i> isolates No. 24, 29 and 34.	62
FIGURE (17): Densitometric scanning of protein patterns of <i>Pseudomonas aeruginosa</i> isolates No. 35, 39 and 42.	63
FIGURE (18): Densitometric scanning of protein patterns of <i>Pseudomonas aeruginosa</i> isolates No. 45, 48 and 50.	64

LIST OF ABREVATIONS

ICU	Intensive Care Unit
ERCP	Endoscopic retrograde cholangiopancreatography
SICU	Surgical Intensive Care Unit
NI	Nosocomial infection
Pa	Pseudomonas aeruginosa
PFGE	Pulsed-field gel electrophoresis
AIDS	Auto immune diseases
PIA	Pseudomonas Isolation Agar
BICUS	Burn intensive care units
CF	Cystic Fibrosis
PBI	Primary blood-stream infection
IV	Intravenous
CNS	Central nervous system
AERs	Automated endoscope preprocessors'
HAI	Hospital – acquired infection
NNIS	National Nosocomial Infection Surveillance System
TBSA	Total body surface area
PCR	Polymerase Chain Reaction
DNA	Deoxy ribonucleic acid
UV	Ultraviolet radiation
dNTPs	Deoxyribonucleotide triphosphates
СТАВ	Hexa decyl trimethyl ammonium bromide
SDS	Sodium dodecyl sulphate
Pl	plasmid
Chr	Chromosomal DNA

Acknowledgment

I am deeply thankful to "ALLAH", by the grace of his Almighty this work with possible.

I am greatly indebted and sincerely thankful to Prof. Dr. Mohamed S. Salama; Professor of Molecular biology, Faculty of Science, Ain Shams University for his generous assistance, encouragment and support during my study.

My profound gratitude and appreciation to Dr. Hala M. Abu Shady; Assistant Professor of Microbiology, Faculty of Science, who suggested the point of research and devoted great efforts and lots of her time and interest in supervising this work together with her guidance and careful instructions.

I would like to express my profound gratitude to Prof. Dr. Mohamed M. El gamal; Consultant of Microbiology El-maadi military Hospital for his generous assistance, encouragement and careful instructions in my study.

I am greatly thankful to all members of El Kasr el Ainy Hospital specially Dr. Mervat Gaber and all staff of the microbiology laboratory, also all members of medical staff at el-Helmia Military Hospital.

I am greatly thankful to everybody of my family and specially for my father soul.

Ghada Mohammed Abd El Reheem

Contents

subject	
Abstract	
Introduction	
Aim of work	
Literature review	5
1) Water contamination	5
2) Epidemiology of <i>Pseudomonas aeruginosa</i>	11
3) Classification and characterization of	19
Pseudomonas aeruginosa	
4) Pathogenesity of <i>Pseudomonas aeruginosa</i>	22
5) Virulence factors of <i>Pseudomonas aeruginosa</i>	30
6) Polymerase chain reaction	35
Material and methods	36
I) Collection of samples	36
II) Bacterial isolation and identification	36
i-Isolation of bacteria	36
ii-Identification of bacterial isolates	37
(A)Morphological characterization	38
(B) Physiological and biochemical	38
characterization of the isolates	
(1)Growth at 42°C	38
(2)Oxidase test	38
(3)Oxidation test	38
(4)Nitrate reduction test	39
(5)Gelatin Liquifaction test	39
(6)Starch hydrolysis test	39
III) Molecular Biology Studies	40
(A)Plymerase Chain Reaction (PCR)	40
(1)Growth of bacteria in Liquid media	40
(2)Isolation of genomic DNA from <i>Pseudomonas</i>	40
aeruginosa	
(3)Determination of concentration and purity of	41

DNA	
(4)Primers for PCR of Pseudomonas aeruginosa	
(5)Agarose gel electrophoresis	43
(6)Visualization and photography of the gel	
(B)Plasmid Profile	
(1)Preparation of plasmid isolation	
(2)Gel preparation	45
(c)Protein electrophoresis	
1-Protein extraction buffers	
Results	
Discussion	
Summary	
References	
Arabic summary	

Dedication

To The Soul of My Father

To The Soul of My Brother

To My Great and Precious Mother

To My Kids Rwan and Omar