

Assessment of Cracks in Reinforced Concrete Beams Using Artificial Intelligence Techniques

By

Ahmed Ayman Ahmed Shaheen

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of
DOCTORATE OF PHILOSOPHY
In
STRUCTURAL ENGINEERING

Assessment of Cracks in Reinforced Concrete Beams Using Artificial Intelligence Techniques

By

Ahmed Ayman Ahmed Shaheen

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfilment of the Requirements for the Degree of

DOCTORATE OF PHILOSOPHY In STRUCTURAL ENGINEERING

Under the supervision of

Prof. Ahmed Mohamed Farhat

Prof. Mohamed Mahdy Marzouk

Professor of Concrete Structures, Structural Engineering Department, Faculty of Engineering, Cairo University Professor of Construction Engineering and Management, Structural Engineering Department, Faculty of Engineering, Cairo University

Assessment of Cracks in Reinforced Concrete Beams Using Artificial Intelligence Techniques

By

Ahmed Ayman Ahmed Shaheen

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of

DOCTORATE OF PHILOSOPHY In STRUCTURAL ENGINEERING

Approved by the Examining Committee
Prof. Ahmed Mohamed Farhat
Prof. Mohamed Mahdy Marzouk
Prof. Talaat Mohamed Mostafa
Dr. Mohamed Abd El Latif Bakry External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Former Director of Strategic Management Department – Social Development Fund, Egypt

Engineer's Name: Ahmed Ayman Ahmed Shaheen

Date of Birth: 01/10/1983 **Nationality:** Egyptian

E-mail: ashaheen2@gmail.com

Phone: 0100 7200 353

Address: 294 E Hdaek El Ahram - Giza

Registration Date: 01/03/2012 **Awarding Date:** 01/03/2018

Degree: Philosophy of Doctorate **Department:** Structural Engineering

Supervisors:

Prof. Ahmed Mohamed Farhat – Cairo University Prof. Mohamed Mahdy Marzouk – Cairo University

Examiners:

Prof. Ahmed Mohamed Farhat Main Advisor
Prof. Mohamed Mahdy Marzouk Advisor

Prof. Talaat Mohamed Mostafa

Dr. Mohamed Abd El Latif Bakry

Former Director of Strategic Management Department – Social Development

Fund, Egypt

Title of Thesis:

Assessment of Cracks in Reinforced Concrete Beams Using Artificial Intelligence Techniques

Key Words:

Crack detection, image processing, image-base analysis, Artificial Neural Network, Expert Systems

Summary:

Several techniques have been introduced to detect cracks and damages in concrete elements. Current practices of evaluating damages in concrete elements are costly and time consuming. This research presents a framework that utilizes artificial intelligence techniques to recognize cracks in reinforced concrete beams. The framework consists of three main components; Image Processing tool, Neural Network models, and Expert System model. Image processing tool utilizes percolation to identify the presence of the structure element and crack map. Then, Red-Green-Blue (RGB) to grayscale and to binary image conversion and filtering algorithms are applied to get a topological crack map. Many aspects are acquired such as coordinates, angels, diagonal, and Total Area of Crack Percentage (TACP) in order to identify geometric properties for both beam element and crack map. Graphical properties including length and orientation are extracted and mapped on the beam element to produce relative measurements and then to crack type recognition. Crack types are predicted using back propagation neural network model. Neural Network model receives geometric properties as an input and produces crack type identification as an output. The expert system model enhances ways of maintenance and rehabilitation. It utilizes the crack type (generated from neural network model) and TACP in order to provide the suitable repair method. Real images for two defected beams are used to validate the proposed framework and to compare its output to manually identified cracks and applied repair method. The results reveal the framework recommended solutions are in compliance with these that have been applied in reality.

ACKNOWLEDGEMENT

I would like to thank ALLAH for his great support in my life, his great help to conduct the research leading to his dissertation and his endless forgiveness.

I thank my advisor Prof. Ahmed Mohamed Farahat for his sincere guidance, encouragement, support, valuable suggestions during the research.

I would like to express my sincere gratitude to my advisor Prof. Mohamed Mahdy Marzouk for his patience, politeness, inspiration and enthusiastic guidance, continued support and encouragement. His fast response, active character and many fruitful discussions are greatly appreciated.

Many thanks are to Prof. Talaat Mohamed Mostafa and Dr. Mohamed Abd El Latif Bakry for their support and guidance.

Finally, I am deeply grateful to my family members for their continued love, affection, encouraging, advice and support through hard times.

To my beloved wife I dedicate this dissertation.

Ahmed Ayman Shaheen, March 2018

CONTENTS

AC	KNOW	LEDGEMENTS	I
CO	NTEN	ΓS	II
LIS	T OF T	FABLES	IV
LIS	T OF F	TIGURES	\mathbf{V}
AB	STRAC	CT	VIII
CH	APTEF	R 1 INTRODUCTION	1
1.1	Genera	ıl	1
1.2	Proble	m statement	1
1.3	Resear	ch Objectives	2
1.4	Resear	ch Scope and Limitations	3
		Organization	3
СН	APTEF	R 2 LITERATURE REVIEW	4
2.1			4
2.2	Cracks	in Reinforced Concrete Elements	5
2.3	Types	of Cracks in Reinforced Concrete Beams	6
	2.3.1	Cracks Due to Bond Failure	6
	2.3.2	Cracks Due to Shrinkage	7
		Settlement Cracking	8
	2.3.4		8
	2.3.5	• •	9
	2.3.6	Chemical Reaction	10
	2.3.7	Corrosion of Reinforcement	12
	2.3.8	Errors in Design and Detailing	12
	2.3.9		13
	2.3.10	Freezing and Thawing	14
	2.3.11	Poor Workmanship	14
2.4	Cracki	ng Evaluation	14
	2.4.1	Determination of location and extent of concrete cracking	16
	2.4.2	Techniques of Measuring Cracks	17
	2.4.3	Crack Properties	19
2.5	Image	Processing Applications in Construction Engineering	27
2.6		nition Using Image Processing Applications	30
2.7	Neural	Networks Applications in Construction	31
2.8		ary and Research Gap	33
O==	A 10/10/20 =	A PROPOSED ED A SERVICEV	~ =
		R 3 PROPOSED FRAMEWORK	35
3.1	Genera		35
3.2		work Components	35
3.3	Frame	work Development Methodology	35

	3.3.1	Photo capturing	35
	3.3.2	Image Processing	37
		3.3.2.1 Filtering	39
		3.3.2.2 Crack Detection	40
		3.3.3.3 Extracted Crack Properties	42
	3.3.3	Knowledge Pattern & Arrangement	45
3.4	Summ	ary	47
CH	APTEI	R 4 IMAGE AND DATA ANALYSIS	49
4.1	Genera	al	49
4.2	Pre-Pr	ocessing of Data	50
4.3	Extrac	ted Data Acquisition	53
4.4	Neural	Network Processing	55
4.5	Output	t Analysis	56
4.6	Trainiı	ng and Testing Results	57
4.7	Summ	ary	58
CH	APTEI	R 5 EXPERT SYSTEM IMPLEMENTATION	59
5.1	Genera	al	59
5.2	Expert	System Application	59
	5.2.1	Expert System Output	60
	5.2.2	Rehabilitation Techniques	60
		5.2.2.1 Treatment of non-penetrating hair cracks	62
		5.2.2.2 Treatment of moderate-width hair cracks	64
		5.2.2.3 Treatment of medium wide cracks	65
		5.2.2.4 Treatment of wide cracks	67
		5.2.2.5 Treatment of steel corrosion	69
		5.2.2.6 Rehabilitation by Strengthening	72
5.3	Case S	tudies	76
	5.3.1	Case of a beam defected by diagonal-shear cracks	76
	5.3.2	Case of a Beam Defected by Flexure Cracks	79
5.4	Summ	ary	86
CH	APTEI	R 6 CONCLUSIONS AND RECOMMENDATIONS	87
6.1	Resear	rch Summary	87
6.2	Resear	ch Contribution	88
6.3	Recom	nmendation for Future Research	88
RE	FREN(CES	89
API	PENDI	X A	95
A IDI	DENETENE	V D	101
ΑĽ	PENDI	λВ	101

LIST OF TABLES

CHAPTER 3 PROPOSED FRAMEWORK	
Table 3-1: A sample for crack properties pattern extracted from an	
image	56
Table 3-2: Considered types of cracks	56
CHAPTER 4 IMAGE AND DATA ANALYSIS	
Table 4-1: Effect Categories of NN geometric characteristics	70
Table 4-2: Average TACP at failure for several crack types	70

LIST OF FIGURES

CHAPTER 2 LITERATURE REVIEW	
Figure 2-1: Stress strain response of behavior of concrete	4
Figure 2-2: Tensile stress rings	7
Figure 2-3: Typical plastic shrinkage cracking	8
Figure 2-4: Crack formed due to obstructed settlement	ç
Figure 2-5: Effect of thermal stresses on cracking in concrete	10
Figure 2-6: Deterioration From Alkali-Silica Reaction	10
Figure 2-7: Concrete crack and spalling due to corrosion	11
Figure 2-8: Crack chloride penetration	12
Figure 2-9: Carbonation process	12
Figure 2-10: Small spall area due to corrosion	13
Figure 2-11: Large spall area	13
Figure 2-12: Large spall area on all balaconies of a building	14
Figure 2-13: Diagram shows location of overloading cracks	14
Figure 2-14: Comparator for measuring crack widths	16
Figure 2-15: Card used to measure crack width	16
Figure 2-16: Cracked zones in webs of beams under combined moment	17
Figure 2-17: Distribution of bond stress between cracks	19
Figure 2-18: Segmentaion method used by Wu and Kim	2
Figure 2-19: Automated wireless image data acquisition system	22
Figure 2-20: Detection of construction work crews using characteristics of	2
human body structure	24
Figure 2-21: Framework of the Urban Infrastructure Database-body	25
Figure 2-22: Schematic diagram of developed consolidation test apparatus	26
Figure 2-23: Geometric features of cracks	27
Figure 2-24: Capturing 3D images to include objects of concern	28
Figure 2-25: Exterior points and polylines exported to 3D modeling Figure 2-26: Detection of defects in a concrete column using 3D robotic	28
system	30
Figure 2-27: Crack detection using histogram analysis	3.
CHAPTER 3 PROPOSED FRAMEWORK	
Figure 3-1: Schematic Diagram for Assessing Cracks in RC Beams	45
Figure 3-2: Flowchart for Assessing Cracks in R.C Beams Using proposed	
Framework	45
Figure 3-3: Sample of Captured Images	47
Figure 3-4: Pixels of Digital Image	48
Figure 3-5: Application of gray scale conversion on an image	49
Figure 3-6: Filtering of Image Process	50
Figure 3-7: After negative conversion of an image	51
Figure 3-8: Difference of converting original image	5

Figure 3-9: Representation of Cracks in a simple beam	52
Figure 3-10: Labeling start and end points of cracks	52
Figure 3-11: Approximation of broken line cracks into one straight line	53
Figure 3-12: Geometric characteristics extracted through image processing	54
Figure 3-13: Types and Shapes of Chosen Cracks in RC beams	55
CHAPTER 4 IMAGE AND DATA ANALYSIS	
Figure 4-1: Samples from images used to observe different crack types	63
Figure 4-2: Diagonal shear cracks in different simple beams sizes	63
Figure 4-3: Bent bar cracks in different simple beams sizes	63
Figure 4-4: Tension-Shear cracks in different simple beams sizes	64
Figure 4-5: Flowchart of data acquisition	65
Figure 4-6: Screen shot for "Palisade Neural tool" during ANN processing	66
Figure 4-7: Two images for beams used for checking ANN validity	67
Figure 4-8: Generated ANN for crack recognition	68
Figure 4-9: Training Error-Learning cycles during ANN running	69
Figure 4-10: Degree of Importance for NN Inputs	69
CHAPTER 5 EXPERT SYSTEM IMPLEMENTATION	
Figure 5-1: Choosing appropriate rehabilitation method in expert system	77
Figure 5-2: Hair cracks shapes in a beam	78
Figure 5-3: Treating hair cracks by painting multi faces of Epoxy	78
Figure 5-4: Moderate wide cracks appear in a beam	79
Figure 5-5: Increase crack width to at least 5 mm	79
Figure 5-6: Pour epoxy in the crack groove	80
Figure 5-7: Medium wide crack appears in a beam	81
Figure 5-8: Increase crack width to at least 10-20 mm	81
Figure 5-9: Create two investigating holes to confirm epoxy penetration	82
Figure 5-10: Inject epoxy through pipes	82
Figure 5-11: Wide cracks appear in a beam	83
Figure 5-12: Spray Cohesive Material in Wide Cracks	83
Figure 5-13: Fill crack with polymerized cement mortar	84
Figure 5-14: Erase cover and show corroded beam RFT	85
Figure 5-15: Paint RFT with anti corrosion epoxy	85
Figure 5-16: Restore Concrete cover	86
Figure 5-17: Use Temporary supports to release loads	86
Figure 5-18: Erase concrete cover at all corroded reinforcement portions	87
Figure 5-19: Setup additional stirrups and main reinforcement	87
Figure 5-20: Restore concrete cover using fine aggregate mix.	88
Figure 5-21: Use Temporary supports to release loads	89
Figure 5-22: Erase concrete cover and rough beam surface	90
Figure 5-23: Setup additional stirrups and main reinforcement considering	00
new dimensions	90

Figure 5-24: Pour concrete jacket using high cement content mix	91
Figure 5-25: Erase any architect finishes and concrete cover before installing	
any steel sections.	91
Figure 5-26: Use cohesive material and bolts to insure good connection	
between steel and concrete	92
Figure 5-27: Cracked beam in an administrative building.	93
Figure 5-28: Scanning the image and allocating its boundary points.	93
Figure 5-29: Converting enclosed area by rectangle W, X, Y, and Z to a	
grayscale image	94
Figure 5-30: Converting image to a binary image	94
Figure 5-31: Image after negative conversion	94
Figure 5-32: Allocating first and second points of crack approximating line	94
Figure 5-33: Using ANN to predict crack type ID	95
Figure 5-34: Computing of total area crack percentage (TACP)	96
Figure 5-35: Inserting case data to the expert system	96
Figure 5-36: Expert system recommends the type of treatment	97
Figure 5-37: Expert system displays the last steps of treatment	97
Figure 5-38: Cracked beam in a residential building basement floor	98
Figure 5-39: Scanning the image and allocating its boundary points	98
Figure 5-40: Converting enclosed area by rectangle W, X, Y, and Z to a	
grayscale image	99
Figure 5-41: Converting the image to a binary image	99
Figure 5-42: Image after negative conversion	99
Figure 5-43: Allocating first and second points of crack approximating lines	100
Figure 5-44: Using ANN to predict crack type ID	100
Figure 5-45: Computing of total area crack percentage (TACP)	100
Figure 5-46: Inserting data of the first case study in the first interface screen	
of the expert system	101
Figure 5-47: Expert system choose the type of treatment and displays its first	40:
steps	101
Figure 5-48: Expert system displays the flexure cracks for case	102

ABSTRACT

Several techniques have been introduced to detect cracks and damages in concrete elements. Current practices of evaluating damages in concrete elements are costly and time consuming. Limited research efforts have focused on automating the process of retrieving damage properties in concrete elements. It is worth noting that choosing a proper repair depends mainly on the causes of defects. This research presents a framework that utilizes artificial intelligence techniques to recognize cracks in reinforced concrete beams. The framework consists of three main components; an Image Processing tool, a Neural Network models, and an Expert System model. Image processing tool utilizes percolation to identify the presence of the structure element and crack map. Then, Red-Green-Blue (RGB) to grayscale and to binary image conversion and filtering algorithms are applied to get a topological crack map. Many aspects are acquired such as coordinates, angels, diagonal, and Total Area of Crack Percentage (TACP) in order to identify geometric properties for both beam element and crack map. Graphical properties including length and orientation are extracted and mapped on the beam element to produce relative measurements and then to crack type recognition. Crack types are predicted using back propagation neural network model. Neural Network model receives geometric properties (extracted by image processing) as an input and produces crack type identification as an output. The expert system model enhances ways of maintenance and rehabilitation. It utilizes the crack type (generated from neural network model) and TACP in order to provide the suitable repair method. Real images for two defected beams are used to validate the proposed framework and to compare its output to manually identified cracks and applied repair method. The results reveal the framework recommended solutions are in compliance with these that have been applied in reality.

CHAPTER 1

INTRODUCTION

1.1 General

Buildings are one of the most precious productions built by human. Construction engineers give great attention to keep structure elements of buildings safe and serviceable. So, there should be efficient tools available with specialists to keep up with requirements and technology rates. One of the most deterioration states that occur in concrete structures is cracking. Hundreds of buildings are subjected to cracks due to unusual structure attacks or even by erosion. Therefore, it is important to introduce a framework that can be used as a tool to support decision towards cracking.

1.2 Problem statement

The safety of defected beams is usually evaluated manually by structural specialists (e.g. structural engineers and/or certified inspectors) they follow the guidelines provided by the applicable specifications and codes, in which they ensure that the defected components remains stable and maintains a specific level of structural integrity. A whole building safety evaluation may take several weeks due to the large number of elements (slabs, beams, columns, and footings) required to be assessed. The aforementioned limitations can be overcome if the current manual evaluation practices are fully or partially automated. This requires that damages lying on structural member surfaces not only be detected, but also to be assessed based on their properties. So far, many machine vision based methods have been created to locate the damage on structural member surfaces, and their effectiveness has been validated in inspecting structures such as bridges, pipes and tunnels. On contrast, little work was found regarding how to automatically retrieve useful damage properties from detection results and further apply these properties to estimate the damage state of structural members.

Concrete structure experts confirm that putting hand on the deterioration reason is essential to choose proper way of repair especially when the defected element is a structural one; that resists combination sorts of straining actions (i.e., normal forces, shear forces, flexure, etc). Each action (whenever it reaches a limit of a section's capacity, or even element's material reached inadequate state) shows a type of deterioration different than other types. These types could be detected and recognized by an expert visual inspection, and then the inspector may recommend a maintenance or rehabilitation method depending on his opinion.

These ideas led to steer the research towards finding the way that enables the expert recognizing crack type. It is found that geometric characteristics of cracks are the right way to do that. However, limited research efforts discuss geometric characteristics of concrete cracks.

Even after crack type is recognized, decision by an expert will stay incomplete till he/she deduces the element impairment extent. In other words; according to the degree of deterioration the element reaches the expert choose between maintenance and rehabilitation. Choosing between maintenance and rehabilitation leads to an economic impact. So, the decision maker considers the feasibility of repair. However, the impairment state may guide the expert that the element is about to fail and rehabilitation