BIOCHEMICAL AND TOXICITY STUDIES ON THE EFFECT OF CARBOFURAN AND ITS FORMULATION ON METABOLISM IN EXPERIMENTAL ANIMALS

By

AMR ABD EL RAZEK ABD ALLAH ALI

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 1998 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2004

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Biochemistry)

Department of Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2009

APPROVAL SHEET

BIOCHEMICAL AND TOXICITY STUDIES ON THE EFFECT OF CARBOFURAN AND ITS FORMULATION ON METABOLISM IN EXPERIMENTAL ANIMALS

Ph.D. Thesis

By

AMR ABD EL RAZEK ABD ALLAH ALI

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 1998 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2004

Approval Committee

Dr. MOHAMED SHABAN HASSAN Professor of Biochemistry, Fac. Agric., Minia University
Dr. EMAM ABDEL MOBDEI ABDEL REHEM Professor of Biochemistry, Fac. Agric., Cairo University
Dr. MOHAMED IBRAHIM MOHAMED KOBEASY Professor of Biochemistry, Fac. Agric., Cairo University
Dr. SHERIF HELMY AHMED Professor of Biochemistry, Fac. Agric., Cairo University

Date: 19 / 12 / 2009

SUPERVISION SHEET

BIOCHEMICAL AND TOXICITY STUDIES ON THE EFFECT OF CARBOFURAN AND ITS FORMULATION ON METABOLISM IN EXPERIMENTAL ANIMALS

Ph.D. Thesis

By

AMR ABD EL RAZEK ABD ALLAH ALI

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 1998 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2004

SUPERVISION COMMITTEE

Dr. MOHAMED IBRAHIM MOHAMED KOBEASY

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. SHERIF HELMY AHMED

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. SALEM MOHAMED SALEM IBRAHIM

Assistant Professor of Animal Production, Fac. Agric. Cairo Univ

Dr. MOHAMED MAHMOUD FARID

Head Researcher of Pesticide, Toxicol. Dept. Central Agricultural

Name of Candidate: Amr Abd El Razek AbdAllah Ali Degree: Ph.D.

Title of Thesis: Biochemical and Toxicity Studies on the Effect of Carbofuran

and its Formulation on Metabolism in Experimental Animals

Supervisors: Dr. Mohamed Ibrahim Mohamed Kobeasy

Dr. Sherif Helmy Ahmed

Dr. Salem Mohamed Salem Ibrahim Dr. Mohamed Mahmoud Farid

Department: Biochemistry

Branch: Biochemistry Approval: 19 /12/ 2009

ABSTRACT

The present study was carried out to investigate the toxicity of carbofuran and its formulations administered daily at 15 and 30 ppm through drinking water for 90 consecutive days on male albino rats, carbofuran as technical type and two formulations furadan and furan containing the same active ingredients. spermatozoa examinations, hormones assay, enzyme related fertility histopathological examinations were carried out. Moreover, the weight of testis and accessory glands were determined. The antioxidant defense system status was examined by determining the activity of the following: glutathione-s-transferase (GST), reduced glutathione (GSH) and superoxide dismutase (SOD) beside the level of triglyceride and cholesterol. The results revealed that a decrease in sperm motility and sperm concentration after 90 days of treatment at the two tested concentrations for furan and carbofuran. While, after 60 days of treatment with furadan and furan caused a decrease of pregnancy rate and litter size per female available at the two concenteration. Moreover, a reduction in weight of testis was noted. On the other hand significant increases were observed in seminal vesicle. Moreover, carbofuran and other formulation caused a decrease of total acid phosphatase activity and fructosamine contant, while increase in lactatedehydrogenase enzyme activity (LDH) which related to fertility. Moreover, did not alter of testosterone in all treatments. Also, carbofuran adjuvant induced significant decrease of GSH, SOD and cholesterol levels but GST activity and total triglyceride increased after treatment. The data revealed that, intoxicated effect of carbofuran, furadan and furan at15&30 ppm on Plasma cholinestersae activity. While, caused a significant decrease in ChE activity after 90days at 30ppm by carbofuran only. Moreover, a reduction in glucose level and total protein for carbofuran and furadan after 60 days. On other hand significant increases were observed in albumin for furan only after 90 days. Also, histopathological changes in testis was noted after treated with furan only.

Key words: carbofuran, spermatozoa examinations, fertility, antioxidant enzyme, lipid profile

DEDICATION

I dedicate this work to whom my heart felt thanks; to my family and my son Marawan for their patience and help, as well as to my parents and my closed friends for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

First and foremost thanks to ALLAH the source of all knowledge, without his help, this work would not have been fulfilled.

I am deeply grateful to **Dr. Mohamed Ibrahim Mohamed Kobeasy**, Professor of Biochemistry, Faculty of Agriculture, Cairo University, for his kind supervision, appreciable advices, continuous encouragement as well as his constructive Comments and kind help during all stages of the thesis.

I would like to thank and express my gratitude to **Dr.** Sherif helmy Ahmed, Professor of biochemistry. Faculty of Agricultural, Cairo University. For his supervision and careful review of the work.

I am greatly indebted to **Dr. Salem Mohamed Salem** Ibrahim. Assistant Professor of Animal production Dept., Faculty of Agriculture, Cairo University, for his kind guidance, valuable advices, beneficial discussion and continuous support during the whole work.

My thanks and I am greatly indebted to **Dr. Mohamed**Mahmoud Farid, Head researcher of Pesticide, Toxicology Dept.
Central Agricultural Pesticide Lab., for his kind help and support in whole work.

Finally, I wish to express my appreciation and thanks to everyone who helped and supported me to accomplish this work.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	4
MATERIALS AND METHODS	30
RESULTS AND DISCUSSION	56
1. Acute oral toxicity of Carbofuran and its formulations	
on male albino rats	56
2. Subchronic toxicity studies	58
a. Physiological studies	58
Effect of Carbofuran and its formulations on male fertility	59
a. Effect on weights testis and accessory sex organs	61
b. Effect on sperm motility and concentration in male rats	65
c. Effect on pregnancy rate, litter size per female available and litter size per pregnant female	70
d. Effect on body weight gain	74
e. Effect on internal organs weight in male rats	78
b. Biochemical analysis	81
1. Effect of carbofuran and its formulations on some	0.1
enzyme activities related fertility	81
a. Effect on plasma fructosamine concentration	81
b. Effect on plasma acid phosphatase activity	85
c. Effect on plasma lactate dehydrogenase activity	88
d. Effect on testosterone level	93

2.	Effect of carbofuran and its formulations on some
	enzyme activates related for oxidative status and
	oxidative stress
	a. Effect on reduced glutathione (GSH) level
	b. Effect on glutathione - S - transferase (GST) activity
	c. Effect on superoxide dismutase (SOD) activity
	d. Effect on triglyceride level
	e. Effect on cholesterol level
3.	Effect of carbofuran and its formulations on some
	biochemical parameters
	a. Effect on cholinesterase (ChE) activity
	b. Effect on glucose level
	c. Effect on total protein level in plasma
	d. Effect on albumine level in plasma
4.	Effect of carbofuran and its formulations on
	haemogram in albino rats
5.	Effect of carbofuran and its formulations on
	histopathological studies
SUMM	
	RENCES
	IC SUMMARY.
ANAD	IC SUMMANI.

CONTANTS

	PAGE
INTRODUCTION	1
REVIEW OF LITERATURE	4
MATERIALS AND METHODS	30
RESULTS AND DISCUSSION	56
1- Acute oral toxicity of Carbofuran and its formulations on male	
albino rats	56
2- Subchronic toxicity studies	58
a- Physiological studies	58
1- Effect of Carbofuran and its formulations on male fertility	59
a- Effect on weights testis and accessory sex organs	61
b- Effect on sperm motility and concentration in male	
rats	65
c- Effect on pregnancy rate, litter size per female available	
and litter size per pregnant female	70
d- Effect on body weight gain	74
e- Effect on internal organs weight in male rats	78
b-Biochemical analysis	81
1-Effect of carbofuran and its formulations on some enzyme	
activities related fertility	81
a- Effect on plasma fructosamine concentration	81
b- Effect on plasma acid phosphatase activity	85
c- Effect on plasma lactate dehydrogenase activity	88
d- Effect on testosterone level	93
2- Effect of carbofuran and its formulations on some enzyme	
activates related for oxidative status and oxidative	
stress	98
a- Effect on reduced glutathione (GSH) level	99
b- Effect on glutathione – S- transferase (GST) activity	104
c- Effect on superoxide dismutase (SOD) activity	107
d- Effect on triglyceride level	110
e- Effect on cholesterol level	113
3- Effect of carbofuran and its formulations on some biochemical	
parameters	117
a-Effect on cholinesterase(ChE) activity	118
b-Effect on glucose level	122
c-Effect on total protein level in plasma	126
d-Effect on albumin level in plasma	130
4- Effect of carbofuran and its formulations on haemogram in male	
rats	133

5- Effect of carbofuran and its formulations on	
histopathological studies	146
SUMMARY	156
REFERENCES	164
ARABIC SUMMARY	

LIST OF ABBREVIATION

Ach-E Acetyl cholinesterase

ACP Acid phosphatase

ALB Albumine

CDNB 1 – chloro2,4- dinitrobenzene

ChE Cholinesterase

DTNB 5, 5 dithiobis (2-nitrobenzoic acid)

EDTA Ethylenediamine tetracetic acid

FSH Follicle stimulating hormone

GR Glutathione reductase

GSH Glutatione reductase

GSH-PX Glutathione peroxidase

GSSG Oxidized glutathione

GST Glutathione - S – transferase

Hb Hemoglobin

LD₅₀ Median lethal dose

LH Latinizing hormone

LDH Lactatdehydrogenase

LP Lipid peroxidation

LPO Lipid peroxidase enzyme

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MCV Mean corpuscular volume

NBT Nitro blue tetrazolium

OFR Oxygen free radical

PCV Packed cell volume

PO Peroxidase enzyme

RBCs Red blood cells

SDH Sorbital dehydrogenase

SOD Superoxide dismutase

TBARS Thiobarbeturic acid

TG Triglyceride

TP Total protein

WBCs white blood cells

LIST OF FIGURES

Figure	Title	Page
Figure(1)	Rotation of pancreas and duodenum.	5
Figure(2)	Regional anatomy of the duodenum.	11
Figure(3)	Variations in the relation of the common bile duct and main pancreatic duct.	17
Figure(4)	Sphincter of Boyden.	18
Figure(5)	Variations of the attachment of the suspensory muscle (ligament) of Treitz.	20
Figure(6)	Arterial supply of the duodenum and pancreas.	22
Figure(7)	General layout of the vessels on the anterior aspect of the duodenal bulb.	24
Figure(8)	Venous drainage of the duodenum and pancreas.	25
Figure(9)	Microscopic anatomy of the duodenum.	30
Figure(10	Abrasion wound over the upper abdomen.	53
Figure(11	KUB revealed retroperitoneal gas collection.	59
Figure(12	U\S picture of duodenal hematoma.	61
Figure(13	Grade I duodenal injury findings in CT.	65

L IST OF FIGURES

Figure(14	Grade II duodenal injury findings in CT.	66
Figure(15	Grade III duodenal injury findings in CT.	67
Figure(16	PA left lateral decubitus with evidence of air between right abdominal wall and lateral hepatic margin	72
Figure(17	Post-ERCP CT abdomen demonstrating a large amount of retroperitoneal air.	73
Figure(18	Kocher maneuver.	77
Figure(19	Cattel maneuver	78
Figure(20	Side-to-side duodenojejunostomy.	84
Figure(21	Sutures can be used to reinforce a tenuous partial-thickness duodenal wound.	85
Figure(22	Application of an omental buttress.	86
Figure(23	Full-thickness duodenal injury primarily closed in a two-layer fashion.	87
Figure(24) a	Duodenal disruption of greater than 50% of the entire circumference including complete transection with primary repair.	88
Figure(24	Roux-en Y jejunal limb anastomosis.	88

L IST OF FIGURES

) b		
Figure(25	Duodenal diverticulization.	93
Figure(26	Pyloric exclusion.	93
Figure(27	Pancreaticoduodenectomy.	93
,		