MANAGEMENT OF POSTEROLATERAL CORNER INJURIES OF THE KNEE

M.D. Thesis in Orthopedic Surgery

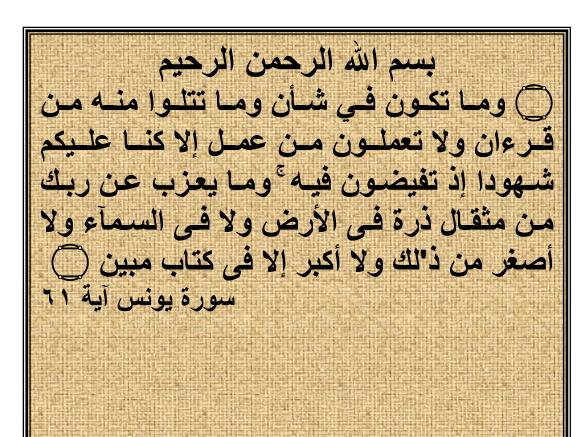
Submitted by

Walid Mohammed Ahmed Abd El-Baky (M.B., B.Ch., M.Sc., Cairo university)

Supervisors

Prof. Dr. Abd El-Aziz Alsengergy

Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University


Prof. Dr.Ahmed Morra

Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University

Dr. Ahmed Galal El-Said

Asist.Professor in Orthopedic Surgery, Faculty of Medicine, Cairo University

Faculty of medicine, Cairo University 2010

ABSTRACT

Posterolateral knee injuries may present as isolated injuries, an

associated injuries with the ACL or PCL or part of the multiple-ligament

knee injuries which determined by clinical tests and addressed using

radiography, MRI or arthroscopy.

Thirteen patients included in this study with a primary diagnosis of

grade III posterolateral knee instability, three were acute combined

injuries underwent repair, three were chronic combined and seven were

chronic isolated injuries. Nine of the chronic cases underwent

reconstruction and one isolated chronic case underwent high tibial

osteotomy only.

Four months postoperatively after rehabilitation protocole 10 patients

were rated normal and nearly normal and complications include residual

varus laxity, common peroneal injury and postoperative infection.

Injuries to the posterolateral corner of the knee can lead to chronic

instability if missed or inappropriately managed. Also can lead to

increased stress on associated cruciate reconstructions.

KEY WORDES

Management _ corner _ knee

<u>Acknowledgement</u>

First of all, I would like to thank God for his grace and mercy and for giving me the effort to complete this work.

I would like to express my deepest gratitude and greatest respect to **Professor Dr. Abd El-aziz Alsengergy** Professor of Orthopedic Surgery, Cairo University, under whose supervision I had the honor and pleasure to proceed with this work. His constant guidance, encouragement and foresight made all the difference.

I would like to express my sincere thanks to **Prof. Dr. Ahmed**Morra Professor of Orthopedic Surgery, Cairo University, for his guidance and encouragement.

My deepest appreciation goes to **Dr. Ahmed Galal El-said**, Lecturer in Orthopedic Surgery, Cairo University, for his supervision advice, effort and for allowing me a free access to his precious time.

I would also like to express my deep gratitude to **Prof. Dr. Ezzat Kamel,** Professor of Orthopedic Surgery, Ain Shams University, for his cooperation and support without which this work could not be possible.

Special thanks goes to all patients underwent this study, for their help and co-operation during the accomplishment of this work.

And last but, by no means least, I would like to thank my parents, wife and my daughter for all their patience, love, support and sacrifice which made this work possible.

AIM OF THE WORK

Accurate diagnosis and management of cases of posterolateral instability using different clinical and radiological modalities in diagnosis with assessment of postoperative functional outcome measures following rehabilitation protocol.

Table of contents

•	Acknowledgement	i
•	Aim of work	ii
•	Table of Contents	iii
•	List of Tables	v
•	List of Figures	vi
•	Part I: Introduction	1
•	Part II: Review of Literature	
	1) Chapter 1: Anatomy	5
	2) Chapter 2: Biomechanics	22
	3) Chapter 3: Clinical diagnosis	33
	4) Chapter 4: Investigations	68
	5) Chapter 5: Managment	90
	6) Chapter 6 : Rehabilitation	128
•	Part III: The work	
	1) Chapter 1: Materials and Methods	137
	2) Chapter 2: Results	156
	3) Chapter 3: Discussion	174
	4) Chapter 4: Conclusion	181
•	Part IV: summary	184
•	References	186
•	Arabic summary	

List of Figures

No.	Title	Page
1-1	Axial diagram shows anatomy of the lateral structures of	
	the knee at the level of the femoral condyles.	6
1-2	Illustration of a coronal section of the anatomy of the	
	posterolateral corner of the knee, layer I, II and III.	6
1-3	The anatomy of the posterolateral corner of the knee (layer	
	I).	7
1-4	Anatomy of the iliotibial tract.	8
1-5	The anatomy of the posterolateral corner of the knee	
	(layers II).	10
1-6	Attachments on the lateral femoral condyle. Sagittal	
	diagram shows the external tuberosity and the attachments	
	of the gastrocnemius muscle, lateral collateral ligament,	
	and popliteus tendon.	10
1-7	Sagittal oblique diagram and Coronal diagram shows the	
	anatomy of the lateral structures of the knee.	13
1-8	Illustration showing how, arising from the posterior part of	
	the fibula. the popliteofibular ligament joins the popliteus	
	tendon just above the musculotendinous junction.	14
1-9	The Fabella.	14
1-10	Anatomical relation to the Fabella.	15
1-11	Semimembranosus, Gracilis, Semitendinosus.	19
2-1	The mechanical axis of the leg during the stance phase of	
	gait and anatomic relationship between the lateral	
	collateral ligament, popliteus and popliteal tendon, and the	
	popliteofibular ligament.	23

	2-2	Section of lateral collateral ligament and deep ligament	
		complex and section of the posterior cruciate ligament and	
		effect on the posterior translation.	26
	2-3	Section of lateral collateral ligament and deep ligament	
		complex and section of the posterior cruciate ligament and	
		effect on the varus angulation.	28
	2-4	Section of lateral collateral ligament and deep ligament	
		complex and section of the posterior cruciate ligament and	
		effect on the external rotation.	29
	2-5	Graph of average load responses seen across the FCL,	
		PFL, and popliteos tendon with an external rotational	
		torque from 0° to 90°.	31
	3-1	Diagram shows the tibial plateau divided into quadrants to	
		visualizing knee instability.	35
	3-2	Mechanisms of posterolateral quadrant injuries.	37
	3-3	Varus alignment in stance phase of gait.	44
	3-4	Values are given in 3-figure form: Extension/Flexion /	
		Lack of extension (from 0°) / Lack of flexion.	45
	3-5	Lachman-Trillat test.	49
	3-6	Lachman-Trillat test.	49
	3-7	A firm endpoint results from the sudden tensioning of the	
		ACL.	50
	3-8	The resisted quadriceps setting will move the tibial	
		tubercle forward.	51
	3-9	Anterior drawer test.	52
	3-10	Postreior sag in 90°.	54
	3-11	Godfrey's drop back test.	55
	3-12	Illustration of the posterolateral drawer test.	57
1		1	

3-13	valgus stress test.	58
3-14	Varus-flexion-internal rotation.	59
3-15	Varus-flexion-internal rotation.	60
3-16	"Frog position" for testing lateral instability in flexion.	60
3-17	External rotation test.	62
3-18	The Dial test.	63
3-19	External rotation recurvatum test.	64
4-1	Segond fracture.	68
4-2	Grade III posterolateral corner injury and associated	
	medial tibial plateau fracture.	69
4-3	AP stress radiograph of a grade II posterolateral corner	
	injury.	70
4-4	Axial MR image shows the iliotibial tract, lateral collateral	
	ligament, popliteus muscle and tendon, and biceps femoris	
	tendon.	72
4-5	Coronal MR images show the anatomy of the iliotibial	
	tract.	73
4-6	Sagittal plane anatomy of the lateral structures of the knee.	74
4-7	Sagittal T2-weighted image shows normal fibular	
	collateral ligament	74
4-8	CoronalT2-weighted image shows normal fibular	
	collateral ligament	75
4-9	Axial T2-weighted image shows normal fibular collateral	
	ligament	75
4-10	CoronalT2-weighted image shows normal biceps femoris	
	tendon insertion.	76
4-11	Axial T2-weighted image shows normal popliteus tendon	
	and muscle.	76

4-12	Coronal T2-weighted image shows normal popliteus	
	tendon and muscle.	77
4-13	Coronal T2-weighted image shows intact popliteofibular	
	ligament.	77
4-14	Sagittal T2-weighted image shows intact popliteofibular	
	ligament.	78
4-15	Axial T2-weighted image shows intact popliteofibular	
	ligament.	78
4-16	Coronal T2-weighted image shows normal fabellofibular	
	ligament.	79
4-17	Axial T2-weighted image shows intact arcuate ligament.	79
4-18	Coronal plane anatomy of the posterolateral structures of	
	the knee.	80
4-19	Sagittal T2-weighted and T1-weighted MR arthrograms of	
	the knee show the popliteal bursa.	81
4-20	Coronal T2-weighted image shows Biceps femoris tendon	
	with tear at insertion.	83
4-21	Sagittal T2-weighted image shows Arcuate fracture.	84
4-22	Coronal T2-weighted image shows proximal tear of fibular	84
	collateral ligament.	
4-23	Axial T2-weighted image shows torn arcuate ligament.	85
4-24	Axial and Sagittal T2-weighted image shows popliteus	86
	injury.	
4-25	Coronal T2-weighted image shows avulsion of distal	86
	popliteofibular ligament.	
4-26	Sagittal T2-weighted image shows medial femoral condyle	
	contusion.	87
4-27	Arthroscopic image of lateral meniscal lift-off with	

	meniscocapsular hemorrhage.	88
4-28	Arthroscopic image of "drive-through" sign.	88
5-1	An arthroscopic view of the lateral compartment of a knee	
	with chronic posterolateral corner injury.	90
5-2	Treatment algorithm for clinical management of	
	posterolateral corner injuries of the knee.	91
5-3	Schematic drawing showing skin incision in lateral face	
	of the knee and lower third of the thigh.	96
5-4	Intraoperative view of posterolateral corner.	96
5-5	Intraoperative view of the peroneal nerve.	97
5-6	The various injuries of the lateral collateral ligament and the	
	standard technique of their repair.	99
5-7	Tears of the lateral collateral ligaments with associated	
	lesions of the deep capsuloligamentous layers and the	
	corresbonding techniques of repair.	100
5-8	Sites of predilection for rupture of the popliteus	
	tendon.	101
5-9	Repair of femoral attachment in avulsion of fibular	
	collateral ligament and popliteus tendon using	
	transosseous drill holes.	103
5-10	A central slip of biceps tendon can be used to	
	anatomically reconstruct the lateral collateral	
	ligament.	104
5-11	A strip of iliotibial band is harvested and tubed with	
	sutures; The strip is then passed through a tibial drill	
	hole from anterior to posterior.	104
5-12	Popliteus bypass using a pedicle graft from the anterior	
	portion of the iliotibial tract.	106

5-13	The biceps tendon augmentation.	106
5-14	A schematic example of a major complex lateral injury and the	
	corresponding techniques of suture repair.	108
5-15	Intraoperative fluoroscopy demonstrating pre- and	
	postoperative radiographs of corrective valgus-producing	
	high tibial osteotomy.	111
5-16	Vulgus high tibial osteotomy with the iliotibial band is removed	
	as a bone block and advanced across the osteotomy site.	112
5-17	Quadriceps bone tendon graft double bundle.	115
5-18	Fibula based- Larsen and Tibio-fibular based PLI reconstruction.	116
5-19	Biceps tenodesis.	118
5-20	Bone- patellar tendon- bone autogenous graft substitution for	
	deficient lateral collateral ligament.	119
5-21	Passage of the achilis tendon circle allograft.	120
5-22	Popliteus Tendon Augmentation Using Iliotibial Band.	122
5-23	The removal of femoral biceps tendon muscle to be used to	
	repair the fibular collateral ligament.	124
7-1	Posterior sag with lateral rotation and lateral joint opening.	140
7-2	Patient no.2 had PLI with grad III Posterior Cruciat Ligament	
	(PCL) tear.(a) posterior sag (b) coronal (c) sagittal MRI.	141
7-3	AP- plain x-ray of patient no.3 with Segond fracture.	142
7-4	Sagittal T1 weighted MRI of patient no 9 show torn posterior	
	horn medial meniscus.	143
7-5	Sagittal T1 weighted MRI of patient no 11 with grad III PCL tear	
	and complete tear ACL.	143
7-6	Patient had varus thrust gait and other with very lax knee.	144
7-7	AP- plain x-rays show lateral laxity without and with stress varus	
	test.	145

7-8	AP- plain x-rays of patient no.1 show supracondylar varus	
	deformity.	145
7-9	Preoperative examination before and after general anesthesia.	147
7-10	Double strands quadriceps tendon–patellar bone autograft.	150
7-11	Tunnels for Fibula based and Tibia and Fibula based techniques.	152
7-12	Fibula based semitendinosus autograft reconstruction technique.	153
7-13	Tibia-Fibula based double strands quadriceps tendon patellar	
	bone autograft reconstruction technique.	154

List of tables

No.	Title	Page
3-1	Increased motion that occurred when only the indicated	
	structure were sectioned.	33
3-2	Activity level and symptoms Knee Ligament Stander	
	Evaluation Form. (The I K D C).	42
3-3	Rang of motion. Knee Ligament Stander Evaluation Form.	
	(The I K D C).	46
3-4	Compartmental findings. Knee Ligament Stander	
	Evaluation Form. (The I K D C).	46
3-5	Ligament evaluation. Knee Ligament Stander Evaluation	
	Form. (The I K D C).	53
3-6	One leg hope test. Knee Ligament Stander Evaluation	
	Form. (The I K D C).	66
5-1	Postoperative rating criteria.	92
6-1	Cincinnati Sportsmedicine and Orthopaedic Center	
	Rehabilitation Protocol for Lateral, Posterolateral	
	Ligament Reconstruction.	129
6-2	Gait Retraining Program for Abnormal Knee Stance	
	Hyperextension.	133
6-3	Discharge Criteria Following Lateral, Posterolateral	
	Reconstructions.	136
7-1	The pre injury activity level of activity for all patients.	138
7-2	The original knee injury for all patients.	138
8-1	Patients' subjective assessment.	160
8-2	Patients' symptoms. (Swelling and Giving way).	161
8-3	Inspection examination of the knee.(Deformity and ROM).	163
8-4	Posterolateral ligamentous examination.	165

169
171
172