PRODUCTION AND PROPAGATION OF VIRUS-FREE PLANTING MATERIALS OF STRAWBERRY

By

YASMER SAYED HUSSEIN MUHAMMAD

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2003

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Agricultural Virology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

2010

Approval Sheet

PRODUCTION AND PROPAGATION OF VIRUS-FREE PLANTING MATERIALS OF STRAWBERRY

By

YASMER SAYED HUSSEIN MUHAMMAD

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2003

This thesis for M.Sc. d	egree has been a	pproved by:		
Prof. Dr. Aly Maamou	n Abd El-Salam		••••••	
Prof. Emeritu	s of Plant Patholo	gy, Faculty o	of Agriculture,	
Cairo Univers	sity			
Prof. Dr. Abdalla Moh	amed Eid El-Ah	dal .	••••	
Prof. of Agri	icultural Virology	, Faculty of	Agriculture,	Ain
Shams Unive	rsity			
Prof. Dr. Badawi Abd	El-Salam Othma	an	• • • • • • • • • • • • • • • • • • • •	
Prof. of Agric	ultural Virology,	Faculty of A	Agriculture, Air	1
Shams Unive	rsity			
Prof. Dr. Khaled Abd	El-Fattah El-Do	ugdoug	•••••	
Prof. of Agri	icultural Virology	, Faculty	of Agriculture,	Ain
Shams Unive	rsity			

Date of Examination: 20 / 7 / 2010

PRODUCTION AND PROPAGATION OF VIRUS-FREE PLANTING MATERIALS OF STRAWBERRY

By

YASMER SAYED HUSSEIN MUHAMMAD

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams University, 2003

Under the supervision of:

Prof. Dr. Khaled Abd El-Fattah El-Dougdoug

Prof. of Agricultural Virology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Badawi Abd El-Salam Othman

Prof. of Agricultural Virology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohammed Emam Ragab

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

ACKNOWLEDGEMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way

There are few opportunities in the most people's lives to demonstrate formally one's gratitude to people who have been mentors and supporters at different steps of our lives. Even thought, we do not forget to stamp those feeling on paper.

I would like to express my sincere thanks, and deep appreciation to **Dr. Khaled Abd EL-Fattah EL-Dougdoug** Prof. of Agricultural Virology, Faculty of Agriculture, Ain Shams University for suggesting the problem, guideness, support, valuable help and fruitful supervision throughout the present study.

Also, deep thanks to **Dr. Badawi Abd EL-Salam Othman** Prof. of Agricultural Virology, Faculty of Agriculture, Ain Shams University for his kindness support, guideness and advising me throughout this study.

Deep Thanks and gratitude are extended to **Dr. Mohammed Emam Ragab** Prof. of Vegetable crops, Department of Horticulture,
Faculty of Agriculture, Ain Shams University for his sincere help,
precious advice and support not only at the scientific level.

Thanks also are extended to all staff member of Agric. Microbiology Dept., Faculty of Agric., Ain Shams University.

ABSTRACT

Yasmer Sayed Hussein Muhammad: Production and Propagation of Virus-Free Planting Materials of Strawberry. Unpublished M.Sc. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2010.

samples from strawberry plants 250 developing symptomless and distinct virus-like symptoms (stunting, mottling, yellowing, vein clearing, vein necrosis, vein banding, leaf curling downward and leaf deformation) were collected from strawberry nurseries and production fields. Plants were subjected to dot blot immunoassay (DBIA) tests using IgG polyclonal antibody specific for strawberry latent ring spot virus (SLRSV), raspberry ring spot virus (RpRSV), strawberry mottle virus (SMoV) and strawberry vein banding virus (SVBV). In addition plants were subjected to RT-PCR and PCR as a molecular detection test and identification some virus isolates for further confirmation. RT-PCR and PCR were used to amplify a fragment of about 497 bp, 490 bp, 384 bp and 472 bp with specific four primer sets from genome of viruses SLRSV, RpRSV, SMoV and SVBV respectively. RpRSV was the most incidence virus. The RpRSV was isolated and identified based on biological, serological and molecular tests. Experiments proved that the virus could be transmitted mechanically to some herbaceous plants, by grafting to sensitive strawberry indicator plants "Alpine" and transmitted by nematode to healthy strawberry. RpRSV isolate was identified by serological reaction with specific polyclonal antibodies by DBIA. The virus isolate was identified also by molecular characters where total RNA was extracted from infected strawberry plants with RpRSV. Production of strawberry virus-free plants was done through elimination of RpRSV from infected plants by chemotherapy, thermotherapy and combination between them using tissue culture. Based on the field inspection, positive serological,

RT-PCR and/or PCR detection results, we concluded that these viruses belong to strawberry viruses which cause diseases in strawberry.

Key Words: Strawberry virus, DBIA, RT-PCR, PCR and Tissue culture.

CONTENTS

1	Page
LIST OF TABLES	iii
LIST OF FIGURES	Iv
LIST OF ABBRIVIATION	vi
INTRODUCTION	1
REVIEW OF LITERATURE	4
MATERIALS AND METHODS	40
Part I: Detection of strawberry viruses	40
1. Collection of natural infected samples	40
2.Examination of viruses	41
2.1. Serological detection	41
2.2. Molecular detection	42
2.2.1. Extraction of total RNA from the infected	
strawberry	42
2.2.2.Primer selection	43
2.2.3.cDNA preparation	43
2.2.4.Amplification of cDNA	44
2.2.5.Extraction of total DNA from the infected	
strawberry	45
2.2.6.Amplification of DNA	46
2.2.7.Analysis of PCR products	46
3. Examination of phytoplasma	46
Part II: Identification of RpRSV	47
1. Isolation of RpRSV	47
2. Properties of virus isolate	47
2.1. Mode of transmission	47
2.1.1. Mechanical inoculation	47
2.1.2. Graft transmission	48
2.1.3. Nematode transmission.	49
2.2. Host range and symptomatology	49
3. Serological properties	50

4. Molecular properties	50
Part III: Eradication of RpRSV	50
1. Preparation of strawberry plants meristems	50
Plant material	50
1.1. Preparation of explants (meristem- tip)	50
1.2. Cultivation of meristem-tip	51
1.3. Tissue culture media and conditions	53
1.4. Multiplication stage	53
1.5. Determination of morphological parameters of	
plantlets	53
1.6. Determination of plantlets pigments	53
1.7. Rooting stage	54
2. Elimination of RpRSV	54
2.1. <i>In-vitro</i> thermotherapy treatment	54
2.2. <i>In-vitro</i> chemotherapy treatment	55
2.3.Combination of chemotherapy and thermotherapy of	
plantlets in-vitro	55
2.4. <i>In-vitro</i> subculturing of treated shoots	55
2.5. Virus detection	56
2.6. Acclimatization stage	56
Buffers and solutions	57
RESULTS	59
DISCUSSION	82
SUMMARY	89
REFERENCES	93
ARABIC SUMMARY	

LIST OF TABLES

Table N	о.	Page
1) 2)	Strawberry plant samples Selected of oligonucleotide primers (nucleotide sequences, annealing temperature and the expected	40
	amplified PCR product)	43
3)	The mixture component for cDNA preparation	44
4)	The mixture component for cDNA amplification	45
5)	Stock solutions for strawberry culture medium	51
6)	Stock solution for Murashige and Skoog micronutrient	51
7)	Stock solution for Murashige and Skoog vitamins and amino acids	52
8)	Composition of different strawberry cultures media.	52
9)	Doubtful viral infected strawberry samples collected from different commercial nurseries and production strawberry fields	63
10)	The frequency of strawberry viruses presence in the collected samples in strawberry growing area at different seasons	65
11)	Reaction of RpRSV isolate with various plants.	73
12)	Effect of raspberry ring spot virus on micropropagation of strawberry plants	80
13)	Effect of thermotherapy and chemotherapy on shoots survival and RpRSV elimination <i>in-vitro</i>	80

LIST OF FIGURES

Fig. No		Page
1)	Strawberry leaves and plants showing different virus- like symptoms collected from nurseries and production fields.	60
2)	Strawberry plants collected from nurseries and production fields showing different virus like symptoms (A) leaf curling downward;(B) mottle ;(C) leaf deformation, mottle, vein necrosis ;(D) vein banding , yellowing ;(E) leaf curling downward and (F) leaf curling downward, mottle	61
	Continue strawberry plants collected from nurseries and production fields showing different virus like symptoms (G) leaf deformation; (H) yellowing; (I) mottle ,yellowing and (J) healthy symptomless plants	62
3)	DBIA of nitrocellulose membrane spotted with extracts of strawberry leaves infected with viruses, positive reactions showed in purplish blue color and negative reactions showed in green color	64
4)	Histogram shows the frequency of strawberry viruses presence % in the collected samples	65
5)	1% agarose gel electrophoresis showing the integrity of total RNA extracted from infected strawberry plants using manual protocol for RNA isolation.	
	Lane 1 RnRSV: Jane 2 SLRSV and Jane 3 SMoV	66

6)	Agarose gel electrophoresis 1% analysis of PCR products from infected strawberry plant, collective results of amplification by PCR techniques	69
7)	Handling cross section of strawberry petiole leaf using Dienes stain showing colorless of phloem.	70
8)	Naturally infected strawberry plant gave a positive result when examined serologically by DBIA against RpRSV	71
9)	Host range of RpRSV , <i>P. hybrida</i> ,(1-healthy, 2,3-infected) ; <i>Ch. amaranticolor</i> (,4- healthy , 5-infected) ; <i>N. tabacum</i> cv. White Burley (,6- healthy , 7- infected) and <i>Capsicum frutescens</i> (,8- healthy , 9- infected)	74
10)	A- Strawberry with RpRSV isolate	75
11)	Micropropagation stages of strawberry plants cv. Gaviota <i>in – vitro</i> (Healthy and infected plants)	79
12)	Histogram shows the effect of different times of the thermotherapy on elimination and survival percentages.	81
13)	Histogram shows the effect of thiouracil different concentrations of the chemotherapy on elimination and survival percentages.	81

LIST OF ABBREVIATIONS

(A)

ACLSV Apple chlorotic leaf spot virus

Agri. Agriculture

ApMV Apple mosaic virus
ArMV Arabis mosaic virus
ASPV Apple stem pitting virus

(B)

BA 6-Benzyl amino purine

bp Base pair

BPYV Beet pseudo yellows virus

(C)

°C Centigrade

CaCo₃ Calcium Carbonate cDNA Complementary DNA

cm Centimeter
cp Coat protein
CsCL Cesium Chloride

cv. Cultivar

(D)

2, 4-D Dichloro phenoxy acetic acid
 DAS Double antibody sandwich
 DBIA Dot blot immunoassay
 DEPC Diethylpyrocarbonate

DHT 2,4 – dioxohexahydro - 1,3,5- triazine

DNA Deoxy ribonucleic acid

ds Double strand

(E)

EDTA Ethylene diamine tetra acetate

ELISA Enzyme linked immunosorbent assay

EM Electron microscopy

EMC East Malling clone of F. vesca infected with

strawberry latent A virus (mild strain of SCV)

EMC clone free of crinkle

EtoH Ethanol

(F)

FCILV Fragaria chiloensis latent virus

Fig. Figure FV- 72 F. vesca

(G)

g Gram

GA₃ Gibberellic acid GFkV Grapevine fleck virus GFLV Grapevine fanleaf virus

GLRaV Grapevine leafroll-associated virus

GVA Grapevine virus A

(H)

HCL Hydrochloric acid HgCl₂ Mercuric chloride

 H_2O Water hr. Hour

(I)

IAA Indol acetic acid
IBA Indol butyric acid
IgG Immunoglobin

Inst. Institute

(K)

KAc Potassium acetate

Kin Kinetin

(L)

L. Liter Lab. Laboratory

(M)

M Molar Microgram μg Milligram mg min. Minute Microliter μl ml Milliliter(s) μM Micrometer Millimeter(s) mm Millimolar mM

MS Murashige and Skoog MW Molecular weight

(N)

NAA Naphthalene acetic acid

NaCL Sodium Chloride NaOH Sodium Hydroxide

ng Nanogram nm Nanometer

(P)

PBS Phosphate buffer saline
PBST Phosphate buffer saline tris
PCR Polymerase chain reaction

PDV Prune dwarf virus

pH Potentiometric hydrogen ion concentration

PNPSV Prunus necrotic ring spot virus

PPV Plum pox virus

PVP Polyvinylpyrrolidone

(R)

RNA Ribonucleic acid

rpm Revolutions per minute
RpRSV Raspberry ring spot virus
RT Reverse transcriptase

(S)

SCV Strawberry crinkle virus

sec. Second(s)

SLCV Strawberry leaf curl virus

SLRSV Strawberry latent ring spot virus

SMoV Strawberry mottle virus

SMYEV Strawberry mild yellow edge virus
SNSV Strawberry necrotic shock virus
SPaV Strawberry pallidosis virus

SPFMV Sweet potato feathery mottle virus

SPMYEV Strawberry pseudo mild yellow edge virus

SVBV Strawberry vein banding virus