New Techniques in CT Angiography and its Clinical Impacts

Essay

Submitted for fulfillment of the master degree in Radiodiagnosis

By

Ali Mutahar Ahmed

M.B, B.CH. Cairo University

Supervisors

Dr. Ayman Ismail Amin Kamel

Assistant professor of radiodiagnosis Faculty of medicine Cairo University

Dr.Mohammad Hamed Shaaban

Lecturer of radiodiagnosis
Faculty of medicine
Cairo University

Faculty of medicine Cairo University 2010

التقنيات الحديثة في التصوير الطبقي المحوري للأوعية الدموية وتأثيراتها السريرية

توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمة من

الطبيب/ علي مطهر احمد بكالوريوس الطب والجراحة جامعة القاهرة

المشرفون

الدكتور/ أيمن اسماعيل أمين كامل

أستاذ مساعد الأشعة التشخيصية كلية الطب - جامعة القاهرة

الدكتور/ محمد حامد شعبان

مدرس الأشعة التشخيصية كلية الطب حامعة القاهرة

> كلية الطب جامعة القاهرة 2010

Acknowledgement

First and foremost, thanks to **ALLAH**, the most gracious, the most merciful.

I would like to express my sincere gratitude to **Dr. Ayman Ismail Amin Kamel** Assistant Professor of radiodiagnosis, faculty of medicine,
Cairo University, who honored me by his supervision and continuous help. I
can not thank him for his valuable encouragement and continuous guidance.

I am so much obliged to **Dr. Mohammad Hamed Shaaban**, *lecturer* of radiodiagnosis, faculty of medicine, Cairo University for his guidance and valuable advises throughout this work. I am much grateful for his great help and support throughout this work.

Special thanks to all teaching staff, and my colleagues in department of *radiodiagnosis* for their continuous and endless encouragement and respect.

Dedication

To my family, especially my parents, for their encouragement, patience, and assistance over the years. I am forever indebted to my parents, who have always kept me in their prayers.

And to beloved wife, my beautiful daughters AYAH and DHOHA, my brothers and my sister.

LIST OF CONTENT

List of figures.	V
List of tables.	ix
List of abbreviation.	x
Introduction	1
Aim of work	2
Basic physical principals	
History	3
Basic CT parameter	7
MDCT spiral/helical scanning	10
Scanning parameters	10
Performance parameters.	18
Scanner technology	23
Anatomy of vascular system	
Head and neck vascular anatomy	26
Thoracic Vascular Anatomy	43
Coronary Vascular Anatomy	53
Abdominal Vascular Anatomy	57
Vascular Supply of the lower limb	87
Vascular Supply of the upper limb	90
Contrast Medium Administration in CTA	
Contrast Media for CTA	95
Safety Issues of Contrast Media for CTA	99
Parameters Affecting Arterial Enhancement	108

Instrumentation and Technique	114
Clinical Contrast Medium Injection Protocols for CTA	123
Postprocessing and Data Analysis	
Rationale for Image Postprocessing	128
Visualization Techniques	
Multiplanar Reformations	131
Curved Planar Reformations	135
Volume Rendering and Ray Casting	140
Maximum-intensity Projections	140
Minimum-intensity Projections	151
Ray Sum	152
Shaded-Surface Displays	154
Volume Rendering	158
Segmentation	172
Bone Subtraction CT Angiography	179
Vessel Analysis Tools Based on a Centerline Approach	182
Two-dimensional Transfer Functions	185
Clinical Impacts of CTA Techniques	
General Consideration	188
Systematic Clinical Applications	198
Summary	207
References	209
Arabic summary	220

List of figures

Number	Title	Page
1	Principle of spiral/helical CT scanning	10
2	Comparison of the detector geometry	12
3	Detector configurations for multidetector-row CT	14
4	Illustration of prepatient collimation of the X-ray beam to obtain different collimated slice widths with a singleslice CT detector	15
5	Spatial resolution as indicated by groups of equidistant drill holes in Plexiglas	21
6	Schematic illustration of a dualsource CT	23
7	Principles of z-flying focal spot technology (z-FFS).	24
8	Frontal view of a schematic drawing of the carotid arteries, vertebral arteries, and intracranial vessels	28
9	Schematic drawing of the relationships with the skull of the external carotid artery and branches	29
10	Schematic drawing of the circle of Willis	29
11	Classification of segments of the ICA	33
12	Schematic drawing of the ICA branches as viewed in a coronal projection.	33
13	Schematic drawing of the cerebral veins	40
14	Schematic drawing showing the superficial veins of the head and neck	42
15	Internal jugular vein and subclavian vein anatomy	42
16	Thoracic aorta	44
17	Angiogram of the aortic arch	44
18	Variations in the origin of the aortic arch branches	45
19	Distribution of the pulmonary artery in both lungs	48
20	Schematic drawing of the pulmonary veins and left atrium	48
21	(MIP) reconstruction in frontal view CT showing the main thoracic veins	52
22	Venous circulation of the thorax in an anterior view	52
23	Diagram of the coronary arteries and veins	56

24	Diagram of the heart and coronary arteries from an anterior	56
	view.	
25	Distribution of the cardiac veins	56
26	Schematic drawing of the thoracic and abdominal aorta and branches	59
27	Schematic drawing of the celiac trunk	62
	Schematic drawing showing the arterial circulation	
28	of the duodenum, stomach, spleen, and greater	62
	omentum	
29	Schematic drawing of the celiac artery and branches	67
30	Schematic drawing of the SMA and main branches	67
31	Schematic drawing of the inferior mesenteric artery circulation	71
32	CT angiogram with 3D reconstruction of the portal system	71
33	Schematic drawing showing the anatomy of the hepatic veins, the portal vein, and the Couinaud segments	75
34	venous system and Sites of portosystemic collaterals	75
35	Schematic drawing of an anterior view from a left kidney shows the branching of the renal arteries	79
36	Schematic diagram showing the right and left kidneys and the relationships of the renal veins and the gonadal veins	79
37	Schematic diagram of the pelvic circulation	83
38	Schematic diagram of the major potential parietal pathways of collateral circulation.	83
39	Schematic diagram of the inferior vena cava, tributary veins	86
40	VR images of the aortoiliofemoral territory	89
41	Schematic drawing showing the superficial venous system of the lower extremity	89
42	Schematic drawing of normal upper extremity arterial anatomy	93
43	Venous anatomy of the right upper extremity	94
44	Physicochemical properties of iodinated contrast media used for CTA.	96
45	The molecular structure of tri-iodinated benzoic acid	97
46	Schematic diagram of iodinated X-ray contrast media.	98

	-	
47	Multiplanar reformation interface shows a four-panel display	134
48	Reorienting the plane for the MPR to illustrate the entire	134
10	course of the vessel	
49	Three-dimensional magic carpet views of the shape of the	138
47	curved planes through vessels.	130
50	magic-carpet view of CPRs	138
51	An automatic tracing of vessel centerline using CT	139
52	Schematic diagram illustrating the principle of MIP	147
53	MIP is largely used in CT angiography	147
54	Example of streak artifact that may obscure vessel lumina on MIP	148
55	Normal right renal artery depicted by CTA	148
56	Limitations of MIP in regions of vessel overlap	149
57	Stenosis overgrading with MIP	150
58	Apparent narrowing increases as background signal increases	150
59	Aortic valve demonstrated with CTA	153
60	Effect of ray sum projection in reducing the noise	153
<i>C</i> 1	Objectiveness of a displayed image determined by a set of	1.7.4
61	threshold intensity parameters.	154
62	Volume rendered images of coronary arteries against the	157
02	cardiac background compared to (SSD) and (MIP) images.	
63	Frontal SSD of the iliac and femoral arteries	157
64	VR and impact of opacity transfer function selection	160
65	CTA following stent-graft placement	164
66	Different applications of lighting in VR	164
67	Lighting effects in VR	165
68	Specular reflection in VR	165
60	VR of the aortic arch and left pulmonary artery using	168
69	grayscale and with the addition of a color scale	
70	Different transfer function settings alter the representation of	1.00
70	the lumen	169
71	Perspective VR	170
72	The degree of divergence in VR	171
73	Chest CTA displayed with VR	175
74	CT table removal using clip or cut planes.	175
75	Frontal VR of a renal CTA within an anterior cut plane and an	176
	oblique cut plane	

76	Manual segmentation using region-of-interest	176
77	Seeded region-growing segmentation	177
78	Image created with segmentation shows punched-out defects	177
79	Automated tibial and fibular bone removal	178
80	MIP image created after bone subtraction CTA	181
81	Illustration of a MMBE procedure	181
82	Analysis on the basis of a centerline determined with segmentation and skeletonization	184
83	Effect of various threshold values on threshold-based definition of the lumen boundary	184
84	Profile of the ideal tissue boundary and the corresponding result at CTA reformation	186
85	Two-dimensional histogram based on intensities and gradient magnitudes	187
86	Volume-rendered image obtained after fitting the parabolic arc object to the area representing contrast-enhanced vessels in the 2D histogram.	187
87	Cross-sectional area characterization of arterial stenoses, manual method.	191
88	Automated determination of vessel dimension	191
89	Manual versus automated centerline extraction	195
90	Inaccurate automated centerline biased by mural calcium	195
91	The spectrum of workstation interfaces	197

LIST OF TABLES

Number	Title	page
1	Overview of the Most Important Scan Parameters for CT Angiography.	11
2	Classification of Segments of the Internal Carotid Artery	32
3	Hepatic Arterial Variants According to Michels	65
4	Adverse Events of Contrast Media, Risk Factors, and	99-
4	Preventive Measures	101
5	Key Rules of Early Arterial Contrast Medium Dynamics	113
	for CTA and Their Consequences	113
6	Imaging Parameters for Computed Tomographic	198
	Angiography of the Intracranial Arteries	170
7	Postprocessing Strategies for Various Neurovascular	199
/	Indications.	177
8	Sample protocols for vascular imaging with 64 detector	201
	rows.	201
9	Generalized Parameters Commonly Recommended for	203
	Abdominal Aorta Coverage	203
10	Generalized Parameters Commonly Recommended for	205
	Thoracoabdominal Aorta	203

LIST OF ABBREVIATIONS

ACA Anterior Cerebral Artery

AChA Anterior Choroidal Artery

ACoA Anterior Communicating Artery

AICA Anterior Inferior Cerebellar Artery

BA Basilar Artery

BUN Blood Urea Nitrogen

BW Body Weight CA Celiac Axis

CCA Common Carotid Artery

CE Contrast Enhanced

CHA Common Hepatic Artery

CIN Contrast medium–Induced Nephrotoxicity

CM Contrast Medium

CNR Contrast-to-Noise Ratio

CPR Curved Planar Reformations

CT Computed Tomography

CTA Computed tomographic angiography

CTPA Computed Tomographic Pulmonary Angiography

CTV Computed Tomographic Veinography

DSCT Dual-Source CT

ECA External Carotid Artery

ECG Electrocardiogram

FFS Focal Spot

FOV Field-Of-View

FWHM Full Width at Half Maximum

Gd Gadolinium

GDA Dastroduodenal Artery

GFR Glomerular Filtration Rate

HU Hounsfield Units

ICA Internal Carotid Artery

IEC International Electrotechnic Commission

IMA Inferior Mesenteric Artery

ISO International Organization for Standardization

IVC Inferior Vena Cava

IV Intravenous

lp/cm line pairs per cm

LAD Left Anterior Descending Artery

LCX Left Circumflex artery

LGA Left Gastric Artery

MCA Middle Cerebral Arteriy

MDCT Multi-detector row CT

Min minute

MinIP Minimum Intensity Projection

MIP Maximum Intensity Projection

MMBE Matched Mask Bone Elimination

MPR Multiplanar Reformation

MRA Magnetic Resonance Angiography

MRI Magnetic Resonance Imaging

MSCT Multislice CT

MTF Modulation Transfer Function

NSAID Nonsteroidal Anti-Inflammatory Drugs

P Pitch

PAD Peripheral Arterial Disorders

PCoA Posterior Communicating Artery

PE Pulmonary Embolism

PICA Posterior Inferior Cerebellar Artery

PICC Peripherally Inserted Central venous Catheters

PSF point spread function

RCA Right Coronary Artery

RI Reconstruction Increment (mm)

ROI Region-Of-Interest

SC Section Collimation (mm)SCA Superior Cerebellar Artery

SFOV Scan Field Of View

SMA Superior Mesenteric Artery

SSD Shaded-Surface Display

SSPs Slice Sensitivity Profiles

SSS Superior Sagittal Sinus

SW Section Width (mm)

t_{CMT} contrast medium transit time

VA Vertebral Artery

VR Volume Rendering

TF Table Feed per tube rotation (mm)

TS Transverse Sinus

INTRODUCTION

Computed tomographic angiography (CTA) is one of the big success stories in diagnostic radiology. CTA was developed shortly after the introduction of spiral (helical) CT scanning in the early 1990s.

Spiral CT had made it possible to cover body regions so rapidly that the transient enhancement of the vascular system following intravenous contrast injection could be captured during one scan. With the introduction of multidetector-row technology, CTA gained a tremendous boost and quickly became an easy-to-perform standard technique for vascular imaging. Over the years, CTA—together with magnetic resonance angiography—has taken over most diagnostic vascular procedures from invasive catheter angiography, first for the aorta and the pulmonary arteries; later for the carotids, renal, and splanchnic arteries; and recently also for peripheral arteries and the circle of Willis. Most recently, CTA of the coronaries has been developed. While coronary CTA is still technically challenging, it also holds the promise to substitute for part of diagnostic cardiac catheter angiographies. (*Rubin and Rofsky*, 2009)

A variety of techniques have been proposed for postprocessing of the resulting images.

The most widely used techniques are multiplanar reformation (MPR), thin-slab maximum intensity projection, and volume rendering. Sophisticated segmentation algorithms, vessel analysis tools based on a centerline approach, and automatic lumen boundary definition are emerging techniques; bone removal with thresholding or subtraction algorithms has been introduced. (*Lell et al.*, 2006).