Evaluation of Hepcidin in Pediatric Patients with Nephrotic Syndrome

Thesis submitted for the partial fulfillment of Master Degree in Pediatrics

 $\mathcal{B}y$

Dr. Eman Abd El Rahman El Sayed

(M.B. B. Ch., 2002, Al Azhar University)

Under Supervision of

Dr. Ihab Zaki Fouad El Hakim

Professor of pediatrics
Faculty of Medicine – Ain Shams University

Dr. Ahmed Abdullah Mohammed

Assistant Professor of pediatrics Faculty of Medicine – Ain Shams University

Dr.Manal Mohammed Abd Al Aziz

Professor of clinical pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2010

Acknowledgement

All thanks to Allah the greatest of all for helping me to complete this work.

I would like to express my sincere and deep gratitude to Prof. Dr. Ihab Zaki Fouad El Hakim, Professor of Pediatrics, and pediatric nephrology, Faculty of Medicine, Ain Shams University, for giving me the privilege of supervising this thesis and for his constructive encouragement, illuminating guidance as well as his support throughout this work.

I am really very grateful and deeply indebted to

Dr. Ahmed Abdullah Mohammad, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his unfailing help, valuable suggestions and good support which helped me to put this work in its best form.

I really wish to express my deep gratitude to

Dr. Manal Mohammed Abd AlAziz, Professor of clinical pathology Faculty of Medicine, Ain Shams University, for her kind assistance, precious and effective effort.

Lastly but not least, I would like to thank all members in my family for grate help pushing me forward all the time.

List of the contents

Pag)	
List of figures	I-II	
List of tables	III-V	
List of abbreviations	VI-IX	
Introduction and Aim of the work	1	
Review of literature	4-57	
Nephrotic syndrome	4	
Hepcidin	33	
Subjects and Methods	58	
Results	64	
Discussion	106	
Conclusion	113	
Recommendations	115	
Summary	116	
References	120	
Arabic summary		

LIST OF ABBREVIATIONS

AA Amino acid

ACEI Angiotensin converting enzyme inhibitors

BMP Bone morphogenetic proteins

C/EBP Core element binding protein

CKD Chronic kidney disease

CsA Cyclosporine A

CYP Cyclophosphamide

DBP Diastolic blood pressure

EDTA Ethylene diamine Tetra-acetic Acid

ELISA Enzyme linked immunosorbent assay

ESA Erythropoiesis stimulating agents

FRNS Frequent relapses nephrotic syndrome

FSGS Focal segmental glomerulosclerosis

GDF15 Growth differentiation factor-15

HAMP Hepcidin antimicrobial peptide

HCT Hematocrite

HD Haemodialysis

HDL High density lipoproteins

HFP Hemochromatosis protein

HH Hemochromatosis

HIF/vHL Hypoxia inducible factor/von Hippel-Lindau

HTN Hypertension

IL-6 Interleukin-6

INS Idiopathic nephrotic syndrome

IRIDA Iron-refractory iron deficiency anemia

LDL Low density lipoproteins

LEAP Liver-expressed antimicrobial peptide

LMW Low molecular weight

LMWP Low molecular weight protein

MCNS Minimal change nephrotic syndrome

MCV mean corpuscular volume

mHJV Membrane isoform of Hemojuvelin

MMF Mycophenolate mofetil

MPGN Membranoproliferative glomerulonephritis

NMR Nuclear Magnetic Resonance

NS Nephrotic syndrome

PCR Polymerase chain reaction

Pr/Cr ratio Protein/creatinine ratio

RDW Red cell distribution weadth

SBP Systolic blood pressure

SDNS Steroid dependent nephrotic syndrome

SLE Systemic lupus erethromatosis

SMAD Sons of against decapentaplegic mother

SNS Secondary nephrotic syndrome

SRINS Steroid resistant idiopathic nephrotic syndrome

SRNS Steroid resistant nephrotic syndrome

SSNS Steroid sensitive nephrotic syndrome

STAT-3 Signal transducer activator of transcription-3

TfR2 Transferrin receptor 2

TMPRSS6 Transmembrane serine protease 6

UTI Urinary tract infection

VLDL Very low density lipoproteins

LIST OF TABLES

Table No.	Title	Page
1	Etiology of nephrotic syndrome	5
2	HDL, high density lipoproteins; LDL, low density lipop	roteins;
	VLDL, very low density lipoproteins	13
3	Hepcidin in pathogenesis of iron disorders	. 57
4	Comparison between cases and controls as regards to so	me
	demographic characteristics	64
5	Comparison between cases and controls as regards to arte	erial
	blood pressure	65
6	Comparison between cases and controls as regards to	
	laboratory findings	66
7	Comparison between remission cases and controls as reg	ards
	to demographic data	68
8	Comparison between remission cases and controls as	
	regards to arterial blood pressure	68
9	Comparison between remission cases and controls as reg	ards
	to laboratory data	69
10	Comparison between relapse cases and controls as regard	s to
	demographic data	71
11	Comparison between relapse cases and controls as regard	s to
	arterial blood pressure	71
12	Comparison between relapse cases and controls as regard	s to
	laboratory data	72
13	Comparison between remission and relapse cases as regar	ds
	to demographic data	74

Tab No		Page
14	Comparison between remission and relapse cases as regard clinical data	s to 75
15	Comparison between remission and relapse cases as regard laboratory data	ds to 76
16	Comparison between remission and relapse cases as regard renal biopsy	s to 78
17	Comparison between remission and relapse in steresponsive cases as regards to demographic	eroid data 78
18	Comparison between remission and relapse responsive case	es as
19	Comparison between remission and relapse responsive case regards to laboratory data	es as 80
20	Comparison between remission and relapse resistant to stero cases as regards to demographic characteristics	id 82
21	Comparison between remission and relapse resistant to ster cases as regards to clinical data	oid 83
22	Comparison between remission and relapse cases in steroid resistant cases as regards to laboratory data	84
23	Comparison between remission and relapse resistant cases a regards to renal biopsy	s 86
24	Correlation between serum Pro hepcidin and demographic d	lata 87
25	Correlation between serum hepcidin and arterial blood pressure	88

Tab No		Page
26	Correlation between serum hepcidin and laboratory data	. 91
27	Comparison between presence and absence of complications as regards serum pro hepcidin in	some cases 99
28	Comparison between steroid responsive and resistant case regards to demographic data	ses as
29	Comparison between steroid responsive and resistant carregards to clinical data	ses as 102
30	Comparison between steroid responsive and resistant cregards to laboratory data	eases as
31	Renal biopsy in resistant cases	105

LIST OF FIGURES

Figure No.	Title	Page
1	Pathophysiology of nephrotic syndrome	9
2	Structure of hepcidin	35
3	Physiology of hepcidin	38
4	Positive regulation of hepcidin	41
5	BMP/ SMAD4 Pathway stimulation of hepcidin4	-2
6	Negative regulation of hepcidin	45
7	Hepcidin in chronic kidney disease	48
8	Effect of inflammation on hepcidin release	54
9	Comparison between cases and controls as regard mean serum pro hepcidin	ds to 67
10	Comparison between remission cases and control regards to mean serum pro hepcidin	ls as 70
11	Comparison between relapse cases and control regards to mean serum pro hepcidin	
12	Comparison between relapse cases and control regards to mean serum pro hepcidin	
13	Comparison between remission and relapse responsi	ve
	cases as regards to mean serum Pro hepcidin	81
14	Comparison between relapse cases and remission S as regards to mean serum pro hepcidin	RNS 35

Figure No.	Title	Page
15 illne	Correlation between serum pro hepcidin and dure	ation of 87
16 sam	Correlation between serum pro hepcidin and SB ples	P in all 89
	correlation between serum Pro hepcidin and DB	P in all
18 sam	Correlation between serum pro hepcidin and I	Hb in all 92
19 sam	Correlation between serum pro hepcidin and Mo	CH in all 93
20	Correlation between serum pro hepcidin and MCV.	94
21 sam	Correlation between serum pro hepcidin and Hopes	CT in all
22 all s	Correlation between serum pro hepcidin and serum amples	m iron in 96
	Correlation between serum pro hepcidin and P/C raples.	atio in all 97
24 crea	Correlation between serum pro hepcidin artinine in all samples	
	Comparison between presence and absence compliants serum pro hepcidin in cases	
26 rega	Comparison between presence and absence of ards serum pro hepcidin in cases	

Figure	Title	Page
No.		

Introduction

Nephrotic syndrome (N.S.) is a clinical and biochemical state that may develop as a primary disease or during the course of several different renal diseases that damages the tiny blood-filtering units (glomeruli) in the kidneys (*Karnovsky and Ainsworth*, 1976). Characterized by protienurea (>1g/m²/day), hypoalbuminemia (<2.5 g/dL) and edema (*Frank et al.*, 2000).

NS is a primarily pediatric disorder and is 15 times more common in children than adults, the incidence is 2-3/100,000 children per year, and the majority of affected children will have steroid-sensitive minimal change disease (*Vogt and Avner, 2007*). In Egypt, the annual incidence of NS ranged between 0.03-0.05% of children presented to the general Pediatric Nephrology Clinic, Ain Shams University (*Farid et al., 1997*).

Patients with NS have tendency to lose different types of proteins in urine including binding proteins as iron binding protein "transferrin" (*Keddis et al., 2007*). Transferrin is the most important glycoprotein for iron transport between sites of absorption and storage and use in the body, so decrease in serum transferrin in nephrotic patients leads to low plasma iron concentration (*Andrews, 1999*). In addition erythropoietin which is lost in urine, resulting in low plasma levels of erythropoietin. These factors combine to create iron resistant microcytic hypochromic anemia (*Keddis et al., 2007*).

Hepcidin is a 25-amino acid cysteine-rich peptide, present in human serum and urine. It is synthesized predominantly by hepatocytes as an 84-amino acid precursor protein and its mature form is released in circulation. This seems to be the "master regulator" of iron metabolism (*Kemna et al.*, 2008).

Hepcidin acts by binding to ferroportin, which is located on the basolateral surface of gut enterocytes and the plasma membrane of reticuloendothelial cells, the only known cell iron exporter, inducing its internalization and subsequent degradation in the cytoplasm (*Ganz et al.*, 2008).

In systemic level, hepcidin upregulation results in inhibition of iron absorption from intestinal enterocytes and iron recycling from macrophages. Hepcidin expression is up-regulated by Iron overload and inflammation, which increase hepcidin release whereas anemia and hypoxia suppress it (*Kemna et al., 2008*).